I had a look at Jacob Bekenstein's 1973 Physical Review D paper "Black holes and entropy" for the answer to my question about Susskind's presentation of the Bekenstein derivation of the formula stating that black hole entropy is proportional to horizon area. An argument similar to the one in Susskind's talk appears in Section IV, except that massive particles are considered, rather than photons, and they can be assumed to be scalar so that the issue I raised, of entropy associated with polarization, is moot. Bekenstein says:
we can be sure that the absolute minimum of information lost [as a particle falls into a black hole] is that contained in the answer to the question "does the particle exist or not?" To start with, the answer [to this question] is known to be yes. But after the particle falls in, one has no information whatever about the answer. This is because from the point of view of this paper, one knows nothing about the physical conditions inside the black hole, and thus one cannot assess the likelihood of the particle continuing to exist or being destroyed. One must, therefore, admit to the loss of one bit of information [...] at the very least."
Presumably for the particle to be destroyed, at least in a field-theoretic description, it must annihilate with some stuff that is already inside the black hole (or from the outside point of view, plastered against the horizon). This annihilation could, I guess, create some other particle. In fact it probably must, in order to conserve mass-energy. My worry in the previous post about the entropy being due to the presence/absence of the particle inside the hole was that this would seem to need to be due to uncertainty about whether the particle fell into the hole in the first place, which did not seem to be part of the story Susskind was telling, and the associated worry that this would make the black hole mass uncertain, which also didn't seem to be a feature of the intended story although I wasn't sure. But the correct story seems to be that the particle definitely goes into the hole, and the uncertainty is about whether it subsequently annihilates with something else inside, in a process obeying all relevant conservation laws, rendering both of my worries inapplicable. I'd still like to see if Bekenstein wrote a version using photons, as Susskind's presentation does. And when I feel quite comfortable, I'll probably post a fairly full description of one (or more) versions of the argument. Prior to the Phys Rev D paper there was a 1972 Letter to Nuovo Cimento, which I plan to have a look at; perhaps it deals with photons. If you want to read Bekenstein's papers too, I suggest you have a look at his webpage.