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Research program: study information processing and
physics in general probabilistic theories (“GPTs")
What?
Characterize quantum and classical theories within broad framework
of “foil theories”...
...perhaps in terms of flow and processing of information.
Understand how possibility/impossibility of information-processing
protocols or physical phenomena (e.g. thermodynamic behavior) are
connected with properties (geometric, etc...) of spaces of states,
measurements, dynamics.

Why?
From pragmatism...

Conceptual understanding of info processing: principles↔ tasks
I ...help develop protocols for, or understand limits to, QIP ...
I ...model info in other complex / concurrent systems?

...to hubris
Information the essence of quantum physics? ...analogue of
Einstein’s principle-based account of special and general
relativity? Wheeler’s It from Bit?
framework for possible new physics?

...and last but not least
Source of compelling mathematical questions about geometry of
convex sets.
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Main result
A result of pure convex geometry, but motivated by the interpretation of
convex compact set as state space of an (e.g. physical) system.

Theorem (H. Barnum and Joachim Hilgert,
arxiv:1904.03753)
Any finite-dimensional compact convex set that is (1) spectral and (2)
strongly symmetric is the space of normalized states of a simple
Euclidean Jordan algebra, or a simplex.

(Barnum, Mueller, Ududec (“BMU") New J. Phys 16 123029 (2014),
also arxiv:1403.4147) already observed the converse (easy from
Jordan spectral theorem and transitivity of Jordan automorphisms on
Jordan frames). BMU had characterized the same set of state spaces
using the additional assumption of “no higher-order interference" in the
sense of Rafael Sorkin (as adapted to GPTs by Ududec, Barnum &
Emerson).
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State spaces and automorphisms

Normalized states of system: Convex compact set Ω⊂ A (affine
space) of dimension n.

A state (element of Ω) is pure if it is extremal in the convex set Ω (i.e.,
not a nontrivial convex combination of distinct states in Ω). The pure
states are the extreme boundary of Ω, written ∂eΩ.

Automorphism group of state space Ω (symmetries, candidate
reversible dynamics): Group Aut Ω of affine maps g : A→ A such that
g(Ω) = Ω.

If we make A into a vector space by taking the centroid c(Ω) as 0, we
can introduce an inner product making it into a Euclidean space E
such that Aut Ω < O(E).
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Effects and measurements

Effect: affine functional: e : A→ R such that e(Ω)⊆ [0,1].
Associated with a measurement outcome whose probability on ω ∈ Ω
is e(ω).
Unit effect: constant functional u with u(A) = 1.
Measurements: Indexed sets of effects ei with ∑i ei = u (more
generally, effect-valued measures).

Give the convex compact set of effects S the pointwise ordering:
u ≥ v := ∀x ∈ Ω, u(x)≥ v(x). Then S is the order interval [0,u].

GPT may specify “allowed" or “physical" set of effects E ⊆ [0,u].
No-restriction property holds if E = [0,u].
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Perfectly distinguishable states and frames:

Crucial notion used in formulating both strong symmetry and
spectrality:

Definition (BMU 2014)
A sequence of pure states ω1, ...,ωn ∈ Ω is perfectly distinguishable
if there exist allowed effects e1, ...,en ∈ E , with ∑i ei ≤ u, such that
ei(ωj) = δij . We also call it a frame or an n-frame. It is maximal if it is
not a proper subsequence of any other frame.

order matters: different orders, different frames.
Fewer effects, less distinguishability, so set of frames depends on
both Ω and E , but when E = [0,u], depends only on Ω. In BH2019
we define distinguishability, frames using [0,u] so spectrality,
strong symmetry are properties of Ω.
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Spectrality and strong symmetry

Spectrality: Every state ω ∈ Ω is in the convex hull of a frame
ω1, ...,ωr : ω = ∑

r
i=1 piωi ,∑i pi = 1,pi ≥ 0.

Strong Symmetry: Aut Ω acts transitively on the set of n-frames.

These abstract (1) the finite-dimensional spectral theorem for quantum
statesd: every density matrix can be written ρ = ∑i piπi where πi are an
orthonormal set of rank-1 Hermitian projectors (i.e. viv∗i for some
orthonormal set of states vi .) and (2) the fact that for two orthonormal
sets πi , σi with i ∈ {1, ...,m}, there is a unitary U such that for all i ,
σi = UπiU†.

SSS =⇒ Unique Spectrality: pi are unique up to a permutation.
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Jordan Algebra State Spaces
(Pascual Jordan, Nachr. Akad. Wiss. Göttingen 1933)
Jordan algebra: real vector space V equipped with a commutative
bilinear product • : V ×V → V ) that satisfies a special case of
associativity, the Jordan property: a2 • (a•b) = a• (a2 •b), where
a2 := a•a.

Abstracts properties from symmetric product (A,B) 7→ (AB + BA)/2 on
Hermitian matrices.

It’s Euclidean (an EJA) if it is possible to introduce an inner product
( · , ·) : V ×V → R such that (a•b,c) = (a,b •c). In finite dim,
equivalent to formal reality: a2 + b2 = 0 =⇒ a = b = 0.

Euclidean =⇒ has unit, e. Define tr x := (e,x).

The normalized state space of an EJA is the compact convex set
Ω := {x ∈ V : tr x = 1}.
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Jordan, von Neumann, Wigner classification

Ann. Math. 35, 29-34 (1934)):
the simple finite-dimensional formally real Jordan algebras are:

Self-adjoint n×n matrices over R, over C, and over H, with
A•B := (AB + BA)/2; V+ is the positive semidefinite (PSD) ones;
Ω the unit-trace ones.
Spin factors: Rp⊕R with product
(x,s)• (y, t) = (tx + sy,〈x,y〉+ st); V+ Lorentz cone in p “space",
one “time" dimension; Ω a Euclidean p-ball.
Exceptional EJA: 3×3 self-adjoint octonionic matrices,
A•B := (AB + BA)/2, V+ = PSD, Ω = PSD unit-trace.
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Linearization and the unnormalized state space
EJAs exemplify a general construction: embed Ω V 'Rn+1 as the base
of a regular cone V+ := R+Ω of unnormalized states by embedding A
(or its Euclideanization E) as an affine hyperplane in V \{0}.
Cone in V : subset closed under nonnegative linear combinations.
regular := pointed (contains no affine line), spans V , topologically
closed.)

Aut Ω y E extends to a representation of Aut Ω as a subgroup of
O(V ), fixing Rc(Ω) pointwise.

V an ordered linear space: x ≥ y := x−y ∈ V+.

Effects extend to linear functionals V → R. [0,u] generates the dual
cone V ∗+, of functionals nonnegative on V+. u ∈ int V ∗+ and
[0,u] = V ∗+∩ (u−V ∗+)

Euclideanity of a Jordan algebra makes the cone of squares regular,
hence a candidate for unnormalized state space: suitable affine slices
(e.g. Ω := {x ∈ V : tr x = 1}∩V+) are compact.
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More information on simple EJAs
Notation: Ω := {x ∈ V+ : tr x = 1}. lieAut V+ =: R⊕g,
K := Aut Ω,k := lieAut Ω.
Facts: Aut Ω = Aut V+∩O(V ), g semisimple with Cartan
decomposition g = k⊕p. Aut V+ y V iso to Aut V+ y p corestricted
from the adjoint representation.

Table: Simple Euclidean Jordan algebras with associated cones and Lie
algebras

V V+ g k dimV rank V
Sym(m,R) PSD(m,R) sl(m,R)⊕R o(m) m(m+1)

2 m
Herm(m,C) PSD(m,C) sl(m,C)⊕R su(m) m2 m
Herm(m,H) PSD(m,H) sl(m,H)⊕R su(m,H) m(2m−1) m
R⊕Rn−1 Lorentz(1,n−1) o(1,n−1) o(n) n 2
Herm(3,O) PSD(3,O) e6(−26) f4 27 3
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Reducibility of systems

A cone V+ in a vector space V is reducible if V = V1⊕V2 and
every extremal ray of V+ is either in V1, or in V2. We write
V+ = V1+⊕V2+.
V1 and V2 are “superselection sectors”. “No coherence between
them”. “Which sector?” is “classical information”.
Every (f.d.) regular cone decomposes uniquely as V+ =⊕iVi+.
For EJA state spaces, simplicity of the EJA ≡ irreducibility of V+.
For an “n-state" classical system Ω =4n−1, V+ =⊕n

i=1R+
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Outline of the proof
Barnum/Müller/Ududec 2014: Ω SSS =⇒ every face of Ω is
generated by a frame. If F ≤G, a frame for F extends to one for
G. All frames for F have same size, called the rank of F .
A flag of a compact convex set Ω is a sequence F1 ( F2 ( · · ·Fr of
nonempty faces. Maximal if not a subsequence of another flag.
Farran/Robertson 1994: Ω is regular := Aut Ω acts transitively on
the set of maximal flags.
Barnum/Hilgert 2019: Ω SSS =⇒ maximal frames ω1, ...,ωr in
bijection with maximal flags F1, ...,Fr via Fi =

∨i
j=1{ωi}. Transitive

action on max flags =⇒ transitive action on max frames (i.e. SSS
=⇒ regular).
Farran/Robertson 1994: given max flag Φ = F1, ...,Fr of regular Ω,
define LΦ(≤ E) = Aff {c(F1), ...,c(Fr )}, πΦ(Ω) = LΦ∩Ω. LΦ is a
regular polytope (with automorphism group KL/K L (aka
NK (L)/ZK (L)) and (obviously) independent of Φ.
Ω = Aut Ω.π(Ω) = Aut Ω.v where v is any vertex of π(Ω).
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Outline of proof, continued
Farran/Robertson 1994, Madden/Robertson 1995: Let Ω be
regular, F be a face of π(Ω) and K = Aut Ω, and write K c(F )

(' NK (F )/ZK (F )) for the stabilizer of c(F ) in K . Then K c(F ).F is a
face of Ω, call it HF , and each face of Ω is k .HF for some face F of
π(B) and some k ∈ K .
Barnum/Hilgert 2019: Ω SSS =⇒ π(Ω) is a simplex whose
vertices are a maximal frame. (Uses further structure theory of
SSS sets from BMU 2014, and preceding item.)
Dadok 1985: A representation of a compact connected group
≤O(V ) (V real, f.d.) is called polar if there is a Cartan
subspace: one meeting every orbit orthogonally.
Madden/Robertson 1995: Ω regular =⇒ Aut Ω y V irreducible
polar, LΦ a Cartan subspace.
Dadok 1985: Irreducible polar representations are orbit-equivalent
to isotropy representations K y p of irreducible symmetric spaces
G/K (G is semisimple, g = k+p the Cartan decomposition of
g = lieG, K y p obtained from ad G by restriction & corestriction).

Barnum, Hilgert Strongly symmetric spectral convex sets June 20, 2019 14 / 49



Madden-Robertson classification of regular convex
bodies
Theorem

1 Let G/K be an irreducible noncompact symmetric space, the
compact group K connected, K y p the isotropy representation,
i.e. g = k+p is the Cartan decomposition of g := lieG and K y p is
the restriction to K of the corestriction to p of the adjoint action
G y g. Let a be a maximal abelian subspace of p and let v ∈ a be
such that P := Conv WK .v ⊂ a is a regular polytope, where
WK := Ka/K a is the Weyl group of K . Then B := K .P = Conv K .v
is a nonpolytopal regular convex body, P = π(B), and P = a∩B .
B is determined, up to affine isomorphism, by the affine
isomorphism class of π(B) and the symmetric space.

2 Conversely, for every nonpolytopal regular convex body B there is
an irreducible noncompact symmetric space G/K such that
B = Conv K .v in the isotropy representation K y p of compact
connected K . π(B) is a∩B, and is a WK -orbitope.
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Madden-Robertson classification, continued

Theorem (continued)
1 In the above, v can be any strictly positive multiple of any

fundamental weight w for which Conv WK .w is a regular polytope.
Fundamental weights are specified by marking a node of the
Coxeter diagram, and Coxeter indicated which marked nodes give
weights such that Conv WK .w is a regular polytope.

2 The list of irreducible noncompact symmetric spaces, with their
dimensions, ranks, and the regular polytopes that occur as Weyl
orbitopes in Cartan subspaces of their isotropy representations, is
given in Tables 2, 3 and 4, which except for their last column are
essentially Tables 2,3, and 4 of Madden/Robertson.
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Madden-Robertson classification: tables
Table: Classical noncompact symmetric spaces with associated isotropy
representations and Farran-Robertson polytopes (adapted from
Madden/Robertson, Table 2)

Type Symmetric space G/K

Rank of
symmetric

space

Dimension of
isotropy

representation Root space Polytope EJA
AI SL(n,R)/SO(n) n−1 (n−1)(n + 2)/2 An−1 4n−1 Herm(n,R)
AII SU∗(2n)/Sp(n) n−1 (n−1)(2n + 1) An−1 4n−1 Herm(n,H)

AIII SU(p,q)/S(Up ×Uq ) q 2pq

{
Cq (q < p)

Bq (q = p)
�q ,♦q R2⊕R (p = q = 1)

BI SO0(p,q)/(SO(p)×SO(q))
p + q odd, q < p q pq Bq �q ,♦q Rp ⊕R (q = 1)

DI SO0(p,q)/(SO(p)×SO(q))
p + q even q pq

{
Bq (q < p)

Dq (q = p)
♦q Rp ⊕R (q = 1)

DIII SO∗(2n)/U(n) bn/2c= q n(n−1)

{
Cq q odd
BCq q even

�q ,♦q R2⊕R (q = 1)

CI Sp(n,R)/U(n) n = q n(n + 1) Cq �q ,♦q R2⊕R (q = 1)

CII Sp(p,q)/(Sp(p)×Sp(q)) q 4pq

{
Cq (q = p)

BCq (q < p)
�q ,♦q R4⊕R (p = q = 1)
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Table: Exceptional noncompact symmetric spaces with associated isotropy
representations and Farran-Robertson polytopes (adapted from
Madden/Robertson, Table 3)

Type Symmetric space G/K
presented by g, k

Rank of
symmetric

space

Dimension of
isotropy

representation Root space Polytope EJA

EIII e6(−14) so(10)⊕R 2 32 B2 �2
EIV e6(−26) f4 2 26 A2 42 Herm(3,O)

EVI e7(−5) so(12)⊕su(2) 4 64 F4 24-cell
EVII e7(−25) e6⊕R 3 54 C3 �3 ,♦3
EIX e8(−24) e7⊕su(2) 4 112 F4 24-cell
FI f4(4) sp(3)⊕su(2) 4 28 F4 24-cell
FII f4(−20) so(9) 1 16 A1 41
G g2(2) su(2)⊕su(2) 2 8 G2 hexagon
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Table: Noncompact symmetric spaces arising as KC/K for simple K , with
associated isotropy representations and Farran-Robertson polytopes
(Madden/Robertson, Table 4)

Type and
root space Symmetric space

Dimension of
isotropy

representation
Polytope EJA

An(n ≥ 1) SL(n + 1,C)/SU(n + 1) n(n + 2) 4n Herm(n + 1,C)
Bn(n ≥ 2) SO(2n + 1,C)/SO(2n + 1) n(2n + 1) �n ,♦n
Cn(n ≥ 3) Sp(n,C)/Sp(n) n(2n + 1) �n ,♦n
Dn(n ≥ 4) SO(2n,C)/SO(2n) n(2n−1) ♦n
F4 FC

4 /F4 52 24-cell
G2 GC

2 /G2 14 hexagon

Remark:

The non-EJA cases in all three tables, especially the ones occuring in
infinite families, should be interesting state spaces to study.
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Inner products, internal representation of the dual and
self-duality

Pick any inner product 〈., .〉 on A.

Internal dual of V+ relative to this inner product is
V ∗int

+ := {y ∈ A : ∀x ∈ V+〈y ,x〉 ≥ 0} . Of course it is isomorphic to
V ∗+ (via the iso that takes y ∈ A to the functional x 7→ 〈y ,x〉).
If there is an inner product relative to which V ∗int

+ = V+, A is called
self-dual.
Self-duality is stronger than V+ affinely isomorphic to V ∗+! (cf.
squit)
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Examples
Classical: A is the space of n-tuples of real numbers; u(x) = ∑

n
i=1 xi .

So ΩA is the probability simplex, V+ the positive (i.e.nonnegative)
orthant x : xi ≥ 0, i ∈ 1, ...,n

Quantum: A = Bh(H) = self-adjoint operators on complex (f.d.) Hilbert
space H; uA(X ) = Tr(X ). Then ΩA = density operators. V+ = positive
semidefinite operators.

Squit (or P/Rbit): Ω a square, V+ a four-faced polyhedral cone in R3.

Inner-product representations: 〈X ,Y 〉= tr XY (Quantum)
〈x ,y〉= ∑i xiyi (Classical)

Quantum and classical cones are self-dual! Squit cone is not, but is
isomorphic to dual.
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Faces of convex sets and Yes/No questions

Face of convex C: subset S such that if x ∈ S & x = ∑i λiyi , where
yi ∈ C, λi > 0, ∑i λi = 1, then yi ∈ S.
Exposed face: intersection of C with a supporting hyperplane.

Classical: exposed faces of the orthant correspond to subsets S
of the indices, and consist of nonnegative n-tuples that are zero
on all indices not in S.
Quantum: exposed faces of V+ (resp. Ω) correspond to
subspaces of Hilbert space, and consist of the PSD operators
(resp. density operators) supported only in S.

For α ∈ V ∗+, ker α is a supporting hyperplane to V+. So for any effect e,
e0 := {x ∈ V+(resp. Ω) : e(x) = 0} is an exposed face of V+(resp. Ω).
So is e1 := {x ∈ V ′+ : e(x) = 1}.
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Consequences of Spectrality and Strong Symmetry
Structure theory of strongly symmetric spectral convex sets from (BMU
2013):

No-restriction: Even if define “frame"(and hence spectrality and
strong symmetry) in terms of E , SSS implies E = [0,u].
Self-duality of V+. (Mueller and Ududec, PRL: no-restriction +
transitivity on 2-frames implies self-duality.)
Perfection: every face is self-dual in its span according to the
restriction of the inner product to that span
Every face of Ω is generated by a frame. If F ≤G, a frame for F
extends to one for G. All frames for F have same size, called the
rank of F .
The orthogonal (in self-dualizing inner product) projection onto the
span of a face F is positive, in fact it’s a filter (defined soon).
Face lattice is orthomodular.
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The lattice of faces

Lattice: partially ordered set such that every pair of elements has
a least upper bound x ∨y and a greatest lower bound x ∧y .
The faces of any convex set, ordered by set inclusion, form a
lattice. So do its exposed faces.
Face lattices, and exposed face lattices, of V+ and Ω are
isomorphic (up to a trivial convention), via Ω⊇ F 7→ Cone (F )⊆ V+.
Complemented lattice: bounded lattice in which every element x
has a complement: x ′ such that x ∨x ′ = 1, x ∧x ′ = 0. (Remark:
x ′ not necessarily unique.)
orthocomplemented if equipped with an order-reversing
complementation: x ≤ y =⇒ x ′ ≥ y ′. (Remark: still not
necessarily unique.)
Orthocomplemented lattices satisfy DeMorgan’s laws.
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Orthomodularity

Orthomodularity: F ≤G =⇒ G = F ∨ (G∧F ′).
Interpret as G∧F ′ as a relative orthocomplement (of F relative to
G).
For a face F of V+, define the face F ′ as
{y ∈ V+ : 〈y ,F 〉= 0},
(i.e. F ′ = F⊥∩V+). (Transfers to Ω trivially.)
SSS =⇒ that ′ is an orthocomplementation, and the face lattice is
orthomodular.
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Projective units

Further consequences of postulates 1 and 2:

Let e1, ...,en be a frame generating F . ∑i ei =: uF is independent
of the frame, and is a projective unit, i.e. P∗uA for P a filter
(defined in next slide). “Am I in the face F?”
For F = Ω, ∑i ei = uA.

Barnum, Hilgert Strongly symmetric spectral convex sets June 20, 2019 27 / 49



Filters

Filter: normalized positive linear map P : V → V P2 = P, with P and
P∗ both complemented.
Complemented means ∃ positive idempotent P ′ such that
im+P = ker+ P ′. (States “pass P" iff they “fail P ′".)
Normalized means ∀ω ∈ Ω u(Pω)≤ 1.

Dual of Alfsen and Shultz’ (Geometry of State Spaces of Operator
Algebras, Birkhauser 2003) notion of compression.
Filters are neutral: u(Pω) = u(ω) =⇒ Pω = ω.
Ω called projective if every face is the positive part of the image
of a filter.

Quantum example: ρ 7→QρQ where Q is the orthogonal projector onto
a subspace of Hilbert space H .
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Flags and regularity

Definition (Farran/Robertson, Madden/Robertson)
A flag Φ of a compact convex set Ω is a sequence Fi of nonempty
exposed faces such that Fi ( Fi+1.
It is maximal if it is not a proper subsequence of any other flag.
Ω is regular if Aut Ω acts transitively on the set of its maximal flags.

Remark: Farran and Robertson’s general definitions and results
involve convex bodies in Euclidean spaces and the symmetry group of
rigid transformations, rather than the in general larger group of affine
transformations, but the notions are equivalent for regular convex
bodies and we ignore the difference for the purposes of this talk.
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Lemma (Barnum/Hilgert 2019)
Strongly symmetric compact convex sets are regular.

Proof defines, for each maximal frame {ω1, ....,ωr}, the sequence of
faces F1, ...,Fr

Fi :=
i∨

j=1

ωj , (1)

shows that this is a maximal flag and that (1) puts maximal frames and
maximal flags in bijective correspondence, and that transitive action of
Aut Ω on flags implies, via this correspondence, transitive action on
frames, using the following elementary fact that does not require SSS:

Proposition

Let g be an automorphism of Ω. If F is a face of Ω, then so is g.F, and
g.c(F ) = c(g.F ). Let Φ be a flag of Ω. Then g.Φ is a flag; it is maximal
if and only if Φ is.
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Fundamental region and Farran-Robertson polytope
Definition (Farran-Robertson 1994)
∆⊆ Ω is called a fundamental region for the action of Aut Ω on Ω if
Ω = (Aut Ω).∆ and Aut Ω-orbits meet the interior of ∆ in at most one
point.

Theorem (Farran/Robertson 1984)
Let Ω⊆ E be regular and Φ = F1, ...,Fr be a maximal flag, and write
cj := c(Fj), the barycenter of Fj . Then

∆Φ(Ω) := Conv {c(F1),c(F2), ...,c(Fr )} (2)

is a fundamental region. Moreover, πΦ(Ω) := Ω∩ lin {c1, ...,cr} is a
regular polytope, which we call the Farran-Robertson polytope of Ω.

Obviously, Ω = (Aut Ω).π(Ω). Less obviously, for any vertex of π(Ω),
we have Ω = Conv Aut Ω.ω.
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Examples of Farran-Robertson polytopes and
fundamental regions
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Correspondence between faces of Ω and of π(Ω)

Proposition (Madden & Robertson 1995; see also Farran &
Robertson, Theorem 10, and its proof)

Let Ω be a regular convex body with symmetry group K . Let F be a
face of π(Ω) with centroid c(F ), and write K c(F ) for the isotropy
subgroup of K at c(F ). Then the orbit K c(F ).F is a face of Ω, which we
call HF , and each face of Ω is of the form k .HF for some face F of π(B)
and some k ∈ K . Moreover, if F1,F2, ...,Fr is a maximal flag of π(Ω),
then HF1 ,HF2 , ....,HFr is a maximal flag of Ω, and every maximal flag of
Ω arises from a flag of π(Ω) in this way.
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Lemma (Barnum/Hilgert 2019)
If Ω is spectral and strongly symmetric, then π(Ω) is a simplex whose
vertices form a maximal frame.

Madden and Robertson classified the regular convex bodies and
determined π(B) for each such body B. Our two Lemmas imply that
the SSS compact convex sets are the subset of these such that π(B) is
a simplex. We establish our main theorem by showing that these are
precisely the EJA state spaces claimed in that theorem.
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Bits

A system whose largest frame has cardinality 2 we’ll call a bit. For the
regular bits, i.e. those with π(Ω) =41, we avoid examining cases in
the tables by using a general result:

Proposition
Spectral strongly symmetric systems whose maximal frames have
cardinality 2 (i.e. SSS "bits") are affinely isomorphic to Euclidean balls.

The proof is essentially due to Dakic and Brukner (2011), who made a
similar statement but with the weaker assumptions of spectrality and
transitivity of Aut Ω on pure states; their argument made an implicit
assumption in one step, which holds if we have transitivity on 2-frames
but is not obvious otherwise.
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Madden-Robertson classification of regular convex
bodies
Theorem

1 Let G/K be an irreducible noncompact symmetric space, the
compact group K connected, K y p the isotropy representation,
i.e. g = k+p is the Cartan decomposition of g := lieG and K y p is
the restriction to K of the corestriction to p of the adjoint action
G y g. Let a be a maximal abelian subspace of p and let v ∈ a be
such that P := Conv WK .v ⊂ a is a regular polytope, where
WK := Ka/K a is the Weyl group of K . Then B := K .P = Conv K .v
is a nonpolytopal regular convex body, P = π(B), and P = a∩B .
B is determined, up to affine isomorphism, by the affine
isomorphism class of π(B) and the symmetric space.

2 Conversely, for every nonpolytopal regular convex body B there is
an irreducible noncompact symmetric space G/K such that
B = Conv K .v in the isotropy representation K y p of compact
connected K . π(B) is a∩B, and is a WK -orbitope.
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Madden-Robertson classification, continued

Theorem (continued)
1 In the above, v can be any strictly positive multiple of any

fundamental weight w for which Conv WK .w is a regular polytope.
Fundamental weights are specified by marking a node of the
Coxeter diagram, and Coxeter indicated which marked nodes give
weights such that Conv WK .w is a regular polytope.

2 The list of irreducible noncompact symmetric spaces, with their
dimensions, ranks, and the regular polytopes that occur as Weyl
orbitopes in Cartan subspaces of their isotropy representations, is
given in Tables 2, 3 and 4, which except for their last column are
essentially Tables 2,3, and 4 of Madden/Robertson.
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Madden-Robertson classification: tables
Table: Classical noncompact symmetric spaces with associated isotropy
representations and Farran-Robertson polytopes (adapted from
Madden/Robertson, Table 2)

Type Symmetric space G/K

Rank of
symmetric

space

Dimension of
isotropy

representation Root space Polytope EJA
AI SL(n,R)/SO(n) n−1 (n−1)(n + 2)/2 An−1 4n−1 Herm(n,R)
AII SU∗(2n)/Sp(n) n−1 (n−1)(2n + 1) An−1 4n−1 Herm(n,H)

AIII SU(p,q)/S(Up ×Uq ) q 2pq

{
Cq (q < p)

Bq (q = p)
�q ,♦q R2⊕R (p = q = 1)

BI SO0(p,q)/(SO(p)×SO(q))
p + q odd, q < p q pq Bq �q ,♦q Rp ⊕R (q = 1)

DI SO0(p,q)/(SO(p)×SO(q))
p + q even q pq

{
Bq (q < p)

Dq (q = p)
♦q Rp ⊕R (q = 1)

DIII SO∗(2n)/U(n) bn/2c= q n(n−1)

{
Cq q odd
BCq q even

�q ,♦q R2⊕R (q = 1)

CI Sp(n,R)/U(n) n = q n(n + 1) Cq �q ,♦q R2⊕R (q = 1)

CII Sp(p,q)/(Sp(p)×Sp(q)) q 4pq

{
Cq (q = p)

BCq (q < p)
�q ,♦q R4⊕R (p = q = 1)
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Table: Exceptional noncompact symmetric spaces with associated isotropy
representations and Farran-Robertson polytopes (adapted from
Madden/Robertson, Table 3)

Type Symmetric space G/K
presented by g, k

Rank of
symmetric

space

Dimension of
isotropy

representation Root space Polytope EJA

EIII e6(−14) so(10)⊕R 2 32 B2 �2
EIV e6(−26) f4 2 26 A2 42 Herm(3,O)

EVI e7(−5) so(12)⊕su(2) 4 64 F4 24-cell
EVII e7(−25) e6⊕R 3 54 C3 �3 ,♦3
EIX e8(−24) e7⊕su(2) 4 112 F4 24-cell
FI f4(4) sp(3)⊕su(2) 4 28 F4 24-cell
FII f4(−20) so(9) 1 16 A1 41
G g2(2) su(2)⊕su(2) 2 8 G2 hexagon
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Table: Noncompact symmetric spaces arising as KC/K for simple K , with
associated isotropy representations and Farran-Robertson polytopes
(Madden/Robertson, Table 4)

Type and
root space Symmetric space

Dimension of
isotropy

representation
Polytope EJA

An(n ≥ 1) SL(n + 1,C)/SU(n + 1) n(n + 2) 4n Herm(n + 1,C)
Bn(n ≥ 2) SO(2n + 1,C)/SO(2n + 1) n(2n + 1) �n ,♦n
Cn(n ≥ 3) Sp(n,C)/Sp(n) n(2n + 1) �n ,♦n
Dn(n ≥ 4) SO(2n,C)/SO(2n) n(2n−1) ♦n
F4 FC

4 /F4 52 24-cell
G2 GC

2 /G2 14 hexagon

Remark:

The non-EJA cases in all three tables, especially the ones occuring in
infinite families, should be interesting state spaces to study.
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Polar representations and regular convex bodies
The results of Farran/Robertson and Madden/Robertson use the
notion of polar representation introduced by Jiri Dadok:

Let G be a compact connected Lie group. A finite-dimensional real
representation G y V is called polar if it admits a Cartan subspace:
a linear subspace that meets every orbit orthogonally.

Dadok classified the irreducible polar representations, showing that
they are all symmetric space isotropy representations, or
subrepresentations of symmetric space isotropy representations
having the same orbits.

Proposition (Madden/Robertson (1995), Proposition 2.2 and its
proof)

Let B be a regular n-solid in E ' En, with centroid 0, and let π be the
inclusion of the symmetry group G of B in O(n)'O(E). Then the
representation π is polar, and for any maximal flag Φ of B, the
centroids of the faces in Φ are a basis for a Cartan subspace, LΦ.
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From strongly symmetric spectral state spaces to
complex quantum mechanics
More motivation:

• Adding energy observability (BMU ’14) or the closely related
orientation (Connes) or dynamical correspondence (Alfsen & Shultz)
gives the space of standard quantum density matrices.

Energy observability: Systems have nontrivial continuously
parametrized reversible dynamics. Each generator of a one-parameter
continuous subgroups (“Hamiltonians”) are associated a nontrivial
observable conserved by the subgroup. (Recalls Noether’s theorem.
Relation to a moment map?)

• So does assuming the existence of a tomographically local
composite Ω⊗Ω that is also strongly symmetric and spectral (SSS).
This follows from Masanes and Müller 2011 New J Phys 13
(arxiv:1004.1483)) plus verification that SSS implies their
assumptions.
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Alfsen-Shultz derivation of Jordan algebraic systems

Theorem (Adaptation of Alfsen & Shultz, Thm 9.3.3)
Let a finite-dimensional system satisfy
(a) there is a filter onto each face
(b) symmetry of transition probabilities, and
(c) filters P preserve purity: if ω is a pure state, then Pω is a

nonnegative multiple of a pure state.
Then Ω is the state space of a formally real Jordan algebra.

Recall that (a) and (b) follow from SSS.
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Alternatives to purity preservation

Alternatives to (c) (Purity preservation) for getting Jordan (all from
Alfsen-Shultz):

(c′) Covering law for face lattice: For every element F and atom a,
either F ∨a = a or F ∨a covers a.
(An element b of lattice covers element a if a≤ b and there is nothing
between them. An atom is an element that covers 0.

(c′′) Every face generated by a pair of pure states is a Euclidean ball.
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Symmetry of transition probabilities

• Given projectivity, for each atomic projective unit p = P∗u (P an
atomic (:= minimal nonzero) filter) the face PΩ contains a single pure
state, call it p̂. p 7→ p̂ is 1:1 from atomic projective units onto extremal
points of Ω (pure states).
• Symmetry of transition probabilities says: for all pairs a,b of
atomic projective units, a(b̂) = b(â).

Lemma
A self-dual projective cone has symmetry of transition probabilities.

Proof: With self-dualizing inner product, normalized so 〈u,ω〉= 1 for
any ω ∈ Ω, the map x 7→ x̂ is the identity map on V , so
a(b̂)≡ 〈a, b̂〉= 〈a,b〉= 〈b,a〉= 〈b, â〉 ≡ b(â).
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Energy Observability

Definition
Let A,Ω be a system with a group of reversible transformations GA
having non-trivial Lie algebra gA.
Energy observable assignment: injective linear map ϕ : gA→ A∗

such that
ϕ(X )◦X = 0 for all X ∈ gA

uA 6∈ ran(ϕ).
We say that “energy is an observable” in A if gA 6= {0} and if there
exists an energy observable assignment.

Theorem (BMU 2013)
A finite dimensional EJA state space satisfies energy observability iff it
is a standard quantum system (over a complex Hilbert space).
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Local Tomography vs. Energy Observability

• SSS and Local Tomography likely also give standard quantum in a
suitable framework.
Question: Relation of LT to energy observability?
• SSS + local tomography + existence of a state space that is a ball
give standard quantum.
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Thermodynamics and statistical mechanics

Thermo/stat mech phenomena are a natural arena for
information-related principles to play a role in physics.

Thermodynamic protocols (e.g. for moving between nonequilibrium
states using adiabatic and isothermal processes at cost governed by
E −TS in some limit) tend to involve

spectra, provided by Spectrality,
use plenty of reversible transformations, provided by Strong
Symmetry (but maybe weakenings of SS suffice?),
possibly measurements using filters (Maxwell’s demon?), provided
by SSS.
Association of reversible evolution with conserved energy
observable, might be relevant, but thermo-like resource protocols
might be possible without it?
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Implications of our result for work on thermo/stat mech
phenomena in GPT systems
M. Krumm, H. Barnum, M. Müller, Barrett (1608.0446 New J Phys):
SSS =⇒ probabilities of the measurement outcomes in the spectral
frame majorize those for any fine-grained measurement. Hence any
concave and Schur-concave function of finegrained measurement
outcome probabilities is minimized by the spectral measurement,
measurement entropy equals preparation entropy, averaging (with any
distribution) over Aut Ω increases these entropies.

Chiribella and Scandolo 1506.00380: same conclusions from
[causality and] purification, purity preservation under parallel and
sequential composition of operations, and strong symmetry. First 4 of
these together imply spectrality.

Present work implies these results concern only irreducible Jordan or
classical systems.
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Majorization results without SSS: I

Chiribella and Scandolo (1608.0449 / also New J. Phys): same
conclusions for sharp theories with purification, which don’t necessarily
have strong symmetry; however Barnum, Lee, Scandolo, and Selby
(1704.05106; Entropy 19, p. 253 (2017)) showed that systems in
these theories are Jordan-algebraic (though not necessarily
simple-or-classical).
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Majorization results without SSS: II
HB, Markus Mueller, Jonathan Barrett, Marius Krumm (1508.03107;
EPTCS 415 (=Proc. 12th QPL)):

Definition
A system has Unique Spectrality if every state has a decomposition
into perfectly distinguishable pure states and all such decompositions
use the same probabilities. A convex compact set Ω is perfect if
V+ := Cone ((Ω)) is perfect and for each face F of V+ the orthogonal
projection onto lin F is normalized.

• Perfection and Unique Spectrality imply that for any state, the
probabilities of the measurement outcomes in the spectral frame
majorize those for any fine-grained measurement.

We still don’t know that such systems must be Jordan algebraic. I think
I have counterexamples.
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Implication for results on query computation

Projectivity of the state space (i.e. filters↔ faces) allows reliable
information storage, retrieval. One can develop notions of query, and
with further assumptions, of phase, phase kickback etc...
• C. Lee and J. Selby, New J. Phys 18 093047 (2016): with
assumptions of causality, purification (unique up to reversible
operations on the purifying systems), purity preservation under
composition (apparently only parallel composition is used), the
existence of a pure sharp effect, and strong symmetry, obtaining
success probability > 1/2 in Grover’s “search" problem requires at
least (3/2−

√
2)
√

N/h queries, where h is the maximal degree of
“higher order interference" possible in the systems used. If h is
independent of the problem size N, this is Ω(

√
N), no better than the

quantum bound. Since the first four assumptions imply spectrality, our
result shows this is actually a Jordan algebraic setting, where h can be
at most 2 (Niestegge 2012; Barnum and Ududec (unpublished) 2009).
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Query complexity, II

Barnum, Lee, and Selby (Found. Phys. 48, 954-981 (2018);
arxiv:1704.05043) obtained two results on GPT query complexity
in a similar setting
(1): a generalization of a quantum “zero-information" query lower
bound of Meyer and Pommersheim: if the maximal order of
interference is h, then if hn quantum queries yield no information about
which of several classes a queryable function falls into (“classification
problem") then neither do n GPT queries, and
(2) confirmation that the notion of black-box query used is reasonable:
if there is a polynomial-size family of GPT circuits Cf for a family of
functions f , one can use them to simulate the black-box queries to the
functions f , with a polynomial family of circuits.

Again, the present result shows that these results are confined to the
setting of irreducible Jordan-algebraic, and classical, systems.
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