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1. Introduction

Quantum mechanics is modelled in terms of Hilbert spaces. Lines appear as pure
states and self-adjoint operators as observables. In traditional courses on the subject
one deals with infinite dimensional Hilbert spaces and evolution equations such as
the Schrödinger equation. In the context of quantum information finite dimensional
Hilbert spaces also play an important role. In this paper we restrict our attention to
the finite dimensional situation.

Fix a finite dimensional complex Hilbert space H . A state is a density operator
on H , i.e. a self-adjoint operator ρ ∈ End(H) such that ρ ≥ 0 and Tr(ρ) = 1 (trace).
The set of states is compact and convex. Its extremal points are then called the pure
states. As operators they are orthogonal projectors to complex lines in H . Note
here that the self-adjoint operators in End(H) form a Jordan algebra with respect
to the product a · b := 1

2
(ab+ ba). The space of self-adjoint operators is viewed as its

own dual space via the trace inner product. Self-adjoint operators that are positive
semidefinite and below the identity operator in the ordering induced by the positive
semidefinite cone are known as effects : viewing them as affine functionals evaluated
on states, they give probabilities. The orthogonal projection operators are effects;
indeed they are the extremal points of the convex set of effects. They also appear as
the elements into which any self-adjoint operator has a spectral expansion.

Thus the probabilistic interpretation of quantum mechanics is closely related
to the spectral theory of density matrices. A research field at the intersection of
physics and mathematics studies what have come to be called General Probabilistic

*Dedicated to Jimmie Lawson
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Theories (GPTs), in which compact convex sets are used to model the state spaces of
abstract (not necessarily quantum) physical or other systems, and affine functionals
on the affine span of the convex state space give probabilities of measurement out-
comes or other processes when evaluated on states. It is therefore deeply concerned
with properties of compact convex sets—including the corresponding spectral the-
ory when such a theory is possible—abstracted from the above example. Although
strictly speaking the main result of the present paper is purely a proposition in the
convex geometry of finite-dimensional compact convex sets, it is partly motivated
by the GPT framework and is formulated using concepts arising in that framework.
It says that a natural spectral assumption together with the presence of a strong
symmetry condition automatically imply the presence of a Jordan algebra structure.

The main result of the paper is presented and proved in Sections 2-6. Using
a basic mathematical framework presented in the remainder of this introduction,
Sections 2 and 3 develop the specific mathematical apparatus and concepts needed
for the main theorem, whose formal statement is then given at the end of Section 3.
Section 4 describes important results, mostly from [13], concerning the structure of
state spaces of strongly symmetric spectral convex sets, that are crucial to proving
our main theorem. In Section 5, we prove two crucial lemmas on the structure of
compact convex sets as regular compact convex sets, and in Section 6 we prove the
main theorem by using these lemmas to place strongly symmetric spectral sets within
the Madden-Robertson classification [49] of regular compact convex sets.

The last three sections discuss implications of our result and relate it to other
work. Section 7 situates our work in the context of general probabilistic theories,
and describes implications for some existing results that use the assumptions of
strong symmetry and spectrality. Section 8 relates it to other characterizations
of various classes of Jordan-algebraic state spaces, and Section 9 describes various
known properties which can serve to narrow down various classes of Jordan-algebraic
state spaces to standard quantum state spaces, i.e. the spaces of complex hermitian
n× n density matrices, or direct sums of such spaces.

In the remainder of this introduction we describe the basic mathematical
setting for our main result.

Let A be a finite dimensional affine space over R . We view A as an affine
hyperplane of the form u−1(1) in a real vector space V , where u ∈ V ∗ is a linear
functional on V . We fix a compact convex subset Ω ⊆ A which spans A as
an affine space. By V+ := Cone(Ω) ⊆ V we denote the (automatically convex)
cone spanned by Ω in V . Note that u(Ω) = {1} implies that u ∈ V ∗+ , where
V ∗+ := {x ∈ V ∗ | ∀v ∈ V+ : x(v) ≥ 0} is the dual cone of V+ . Note that V ∗+ defines
a partial order on V ∗ , which we will denote by ≤ . Note also that the structure is
determined completely by the triple (V,Ω, u).

Definition 1.1. We call the triples (V,Ω, u) embedded state spaces. An embedded
state space is irreducible if it cannot be written in the form (V1⊕V2,Ω1⊕Ω2, u1 +u2)
for two embedded state space triples (V1,Ω1, u1) and (V2,Ω2, u2).

Although we make extensive use of the embedding of Ω in V and of the cone
V+ , our result concerns only the convex geometry of Ω and hence is independent of
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the particular choice of embedding. This is because of the following elementary fact:

Proposition 1.2. Let (V,Ω, u) and (W,Υ, v) be two embedded state spaces. Ω
is affinely isomorphic to Υ if, and only if, there is an isomorphism φ : V → W of
ordered linear spaces such that φ(Ω) = Υ.

We note in passing that since in the triple (V,Ω, u), Ω spans an affine
hyperplane in V \ {0} , the data (V,Ω) determine u .

2. Distinguishability and frames

In this section we formulate the conditions on state spaces that, according to our
main result, ensure the presence of Jordan structure.

We consider the group Aut(A) of affine automorphisms of A as a subgroup
of GL(V) and set

K := Aut(Ω) := {ϕ ∈ Aff(A) | ϕ(Ω) = Ω}.

Remark 2.1. The space A can be given the structure of a euclidean vector space
E such that 0 ∈ E is the barycenter c(Ω) of Ω and Aut(Ω) ⊆ O(E). Of course V
can also be given a euclidean structure such that Aut(Ω), considered as a subgroup
of GL(V ), is a subgroup of O(V ) fixing the one-dimensional subspace Rc(Ω).

Definition 2.2. (i) An element x ∈ V ∗ is called an effect if it is contained in
the order interval [0, u] := {x ∈ V ∗ | 0 ≤ x ≤ u} .

(ii) A measurement is a finite sequence e1, . . . , em of effects such that
∑m

j=1 ej = u .

(iii) The elements of Ω are called states. The extremal states are called pure.

(iv) The states ω1, . . . , ωm ∈ Ω are called perfectly distinguishable if there exists a
measurement e1, . . . , em such that ei(ωj) = δij for i, j ∈ {1, . . . ,m} .

(v) An m-tuple (ω1, . . . , ωm) of pure states is called a frame (or m-frame) if the
ωj are perfectly distinguishable.

An equivalent characterization of perfect distinguishability will be used later.
We call an indexed set of effects E = {ei} a submeasurement if

∑
i ei ≤ u . For each

submeasurement E = {e1, . . . , er} , the indexed set E ′ := {e1, . . . , er, er+1} , where
er+1 := u−

∑r
i=1 ei , is a measurement. Then perfect distinguishability of ω1, . . . , ωr

is equivalent to the existence of a submeasurement such that ei(ωj) = δij , for it is
easy to see that er+1(ωi) = 0 for all i ∈ {1, . . . , r} , whence there are many ways
of constructing an r -outcome measurement {e′1, . . . , e′r} such that ei(ωj) = δij—for
instance, let e′1 = e1 + er+1 , and e′i = ei for all i ∈ {2, . . . , r} .

Now we are able to formulate the two conditions on Ω which, by our main
result, will enforce its affine isomorphism to the normalized state space of a Jordan
algebra, and hence the existence of an embedding (V,Ω, u) such that V has the
structure of a Jordan algebra with unit e = u :
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Definition 2.3. (i) Ω is called spectral if for each ω ∈ Ω one can find a frame
(ω1, . . . , ωm) such that ω is contained in the convex hull Conv(ω1, . . . , ωm).

(ii) Ω is strongly symmetric if for all m = 1, . . . , 1 + dim Ω = dimV the natural
action of Aut(Ω) on the set of m-frames is transitive.

Note that the transitive action of Aut(Ω) on frames includes the ability to
permute the elements of a given frame. Also note that strong symmetry implies
pure-state transitivity, i.e. transitive action of Aut(Ω) on the set ∂eΩ of extreme
points of Ω, and the latter implies that for any ω ∈ ∂eΩ, c(Ω) =

∫
Aut(Ω)

dµ(g)g.ω ,

where g ∈ Aut(Ω) and dµ is normalized Haar measure on Aut(Ω).

The following two examples are prototypical for the situation described above.

Example 2.4 (Simplices in Rn+1 ). Let V = V ∗ = Rn+1 with standard inner
product and standard basis e1, . . . , en+1 . We set ωj := ej and let A be the affine
span of ω1, . . . , ωn+1 . Then we define u ∈ V ∗ by

u
( n+1∑
j=1

cjej

)
:=

n+1∑
j=1

cj.

For Ω := Conv(ω1, . . . , ωn+1) the ωj are the pure states and e1, . . . , en+1 is a
measurement. Moreover Aut(Ω) is simply the symmetric group Sn+1 permuting the
pure states. Thus (ω1, . . . , ωn+1) are an n+ 1-frame and all other n+ 1-frames are
permutations of this one. As Sn+1 acts transitively on subsets of fixed cardinality we
see that Ω is spectral and strongly symmetric. In the study of general probabilistic
theories, simplices are often called classical state spaces.

Example 2.5 (Real symmetric matrices). Let V be the space of real symmetric
n× n-matrices and V+ := {a ∈ V | a positive semidefinite} . Set u := tr := Tr

n
and

Ω := {a ∈ V+ | a positive semidefinite, tr(a) = 1}.

If we identify V and V ∗ via the trace form we obtain u = 1n , the identity matrix of
size n . Then measurements are decompositions of 1n into sums of positive semidef-
inite matrices. In particular, any decomposition of 1n into a sum of orthogonal
projections is a measurement. An n-frame is a decomposition of 1n into sums of
orthogonal rank-1 projections.1 In this case Aut(Ω) = O(n)/{±1n} with respect to
the action a 7→ gag> for g ∈ O(n). Now standard linear algebra implies that Ω is
spectral and strongly symmetric.

For readers interested in seeing an example that is nonclassical, but quite
different in nature from the quantum and Jordan-algebraic state spaces that are our
main concern here, we give the following example which is, however, not essential to
understanding our main result.

1This is not necessarily obvious, but it follows from Lemma 3.3 below.
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Example 2.6. The square bit, sometimes called squit or gbit (the latter for
“generalized bit”) is the system whose normalized state space Ω is a square. If one
represents this as the convex hull of (0, 0), (0, 1), (1, 0), (1, 1) in R2 , one may interpret
the coordinates (x, y) as two probabilities: x is the probability of getting the outcome
x1 in a measurement with two outcomes x1, x2 , and similarly y is the probability
of getting the outcome y1 , in a second possible two-outcome measurement that can
be made on the system. The representation (V,Ω, u) is of course not unique, but
one may take V = R3 , let Ω be the convex hull of (−1

2
,−1

2
, 1), (−1

2
, 1

2
, 1), (1

2
,−1

2
, 1),

and (1
2
, 1

2
, 1), with u = (0, 0, 1). The cone V+ over Ω is polyhedral, with four

extremal rays and four maximal proper faces. If we use the dot product to represent
linear functionals as elements of R3 , the convex body of effects E is the convex
hull of (0, 0, 0), (0, 0, 1), and the four additional extremal effects a = (1, 0, 1

2
), b =

(0, 1, 1
2
), c = (−1, 0, 1

2
), d = (0,−1, 1

2
). It is shaped like two pyramids, with apices

(0, 0, 1) and (0, 0, 0), glued together at their square bases whose corners are the four
effects just listed, and generates the dual cone, which is also a polyhedral cone with
four extremal rays, but rotated by π/4 (around the z -axis) from the cone over Ω.
The measurement x mentioned above has outcome probability for x1 given by a for
x2 given by c : similarly measurement y corresponds to effects b and d . This state
space has been important in the study of generalized probabilistic theories, as an
example of how a system may have some, but not all, of the properties sometimes
considered to be peculiarly quantum. In particular, while the measurements x and
y are complementary in the sense that in general a measurement of one must disturb
the outcome probabilities for the other, all of the pure states guarantee definite
outcomes—no uncertainty—for both of these measurements.

The following result will simplify the proof of our main theorem. This result
is essentially proved in [29], where, however, a stronger claim, with the assumption
of transitivity on pure states in the premise, is made. A small gap in the proof needs
to be filled by the stronger assumption of transitivity on 2-frames.

Proposition 2.7. If Ω is spectral and strongly symmetric, and such that maximal
frames have cardinality less than 3, then Ω is affinely isomorphic to a euclidean ball.

Proof. Because it is an orbit of a subgroup of O(E), the set ∂eΩ of extremal
points of Ω is contained in the sphere S := {x ∈ E : ||x|| = c} where || · || denotes
the euclidean norm. We scale the inner product by a positive real number so that
c = 1.

We now prove that every pair of perfectly distinguishable points in Ω are the
endpoints of some diameter of S . We begin by showing (following [29] but with a
bit more detail) that for every extremal ω ∈ Ω, the point −ω also belongs to Ω,
and [ω,−ω] is a 2-frame.

Recall that a chord of a sphere is defined to be a closed line segment whose
endpoints are two distinct points on the sphere. We will use the fact that the only
chords of a sphere that contain its center are the diameters, i.e. the chords from x to
−x . Since Ω is spectral with maximal frame size 2, every nonextremal point in Ω,
in particular its center, 0, is a convex combination of two perfectly distinguishable
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extremal points of Ω. Let ω0 and ω1 be extremal points of Ω such that 0 is a
convex combination of them. Since all extremal points of Ω lie on the sphere S , the
set of convex combinations of ω0 and ω1 is a chord of S containing its center, 0.
Therefore it is a diameter, and ω1 = −ω0 . Since Ω has pure-state transitivity (i.e.
transitivity of Aut(Ω) on 1-frames, which are precisely the extremal points), every
extremal point ω of Ω can be obtained from ω0 by acting with an element of O(V ),
whence, by linearity of the action, −ω is also in Ω. So we have established that Ω
is symmetric under coordinate inversion x 7→ −x , and that every pair ω,−ω is a
maximal frame.

We still need to show that there are no other maximal frames in Ω, i.e. no 2-
frames that are not the endpoints of a diameter.2 If we have transitivity on 2-frames,
we get this immediately: every 2-frame is an automorphic image of (ω0,−ω0), and
therefore of the form (ω,−ω) for some extremal ω .

We follow [29] in using this to show that Ω is a ball. The barycenter (also
known as centroid) of a compact convex set, which is 0 in the case of Ω, is in its
relative interior. Ω is full-dimensional, so its relative interior is its interior, and there
is an open ball around 0 contained in Ω. So for any x ∈ S there is λ ∈ (0, 1] small
enough that λx ∈ Ω. By spectrality, λx is a convex combination of two perfectly
distinguishable extremal points of Ω. Since all such pairs are endpoints of diameters,
λx must be a convex combination of the endpoints of a diameter. For x ∈ S the only
diameter containing λx 6= 0 is the one between x and −x . So we have shown that
x ∈ Ω; but x was an arbitrary element of S . Since the entire sphere S belongs to
the extreme boundary of the convex set Ω, and we earlier showed that all extremal
points of Ω are in S , Ω is the convex hull of the (n− 1)-sphere S ' Sn−1 , i.e. it is
an n-dimensional euclidean ball.

3. Euclidean Jordan Algebras

Recall the notion of a euclidean Jordan algebra (EJA) from e.g. [32]. In a euclidean
Jordan algebra V one has the cone V+ of squares, the intrinsic Jordan trace tr(x)
of an element x ∈ V , and inner product 〈a, b〉 := tr(a · b), which we use to identify
V with V ∗ . With this identification, V+ = V ∗+ , i.e. V+ is self-dual with respect to
this inner product. Then Ω := {x ∈ V+ | tr(x) = 1} is a compact convex set which
is called the normalized state space of V , with Aut(Ω) < O(V ). In this example the
order unit u is equal to the unit e of the Jordan algebra.

Jordan, von Neumann and Wigner [42] classified the finite-dimensional eu-
clidean Jordan algebras. They are precisely the n × n self-adjoint matrices with
entries in R,C , or H and the 3 × 3 octonionic self-adjoint matrices, equipped in
each case with symmetrized matrix multiplication x · y = (xy + yx)/2 as Jordan
product, and the spin factors Rn ⊕ R for every n ≥ 1, equipped with the product

(x, s) · (y, t) = (tx + sy, 〈x,y〉+ st). (1)

Here x,y ∈ Rn , s, t ∈ R . Self-adjoint (“hermitian” is also used) means M = M † ,

where M † := M
t
, and M ’s entries are the conjugates of M ’s with respect to the

2This is the main point at which we perceive a gap in the argument in [29] which we do not see
how to easily bridge using only pure-state transitivity and spectrality.
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Table 1: euclidean Jordan algebras with associated cones and Lie algebras

V V+ g k dimV rank V
Mm(R)sa PSD(m,R) sl(m,R)⊕ R o(m) m(m+ 1)/2 m
Mm(C)sa PSD(m,C) sl(m,C)⊕ R su(m) m2 m
Mm(H)sa PSD(m,H) sl(m,H)⊕ R su(m,H) m(2m− 1) m
R⊕ Rn−1 Lorentz(1, n− 1) o(1, n− 1) o(n) n 2
M3(O)sa PSD(3,O) e6(−26) f4 27 3

canonical conjugation on R,C , H , or O . The conjugation is the identity in the case
of R , thus the self-adjoint real matrices are just the real symmetric matrices. The
following table, essentially from [32], gives further information about these Jordan
algebras: g is the Lie algebra of Aut(V+) and the maximal compact subalgebra k of
g , is the Lie algebra of Aut(Ω).

A Jordan frame for V consists of a maximal orthogonal set of primitive idem-
potents in V . Jordan frames appear in the spectral theorem for finite-dimensional
EJAs (cf. [32]):

Theorem 3.1 (Spectral theorem for finite-dimensional euclidean Jordan algebras).
Every element x of a euclidean Jordan algebra has a decomposition

x =
r∑
i=1

λici (2)

where λi ∈ R and ci are a Jordan frame. When we rewrite this as

x =
∑
α

λαcα, (3)

where cα := (
∑

i∈α ci) and the sets α ⊆ {1, . . . , r} are a partition of the indices into
the largest subsets within which λi =: λα is constant, then the decomposition (3),
into not-necessarily-primitive idempotents, is unique.

This is a combination of Theorems III.1.1 and III.1.3 in [32]. The values λα
are called the spectrum of x .

Proposition 3.2. The normalized state space of a euclidean Jordan algebra is
spectral.

Proof. The primitive idempotents of an EJA V are precisely the extremal points
of its normalized state space Ω (cf. [32]). Since V+ is self-dual, and all idempotents
are below or equal to the order unit e ,3 they are also effects. Orthogonality of prim-
itive idempotents with respect to the inner product implies, given our identification

3An easy argument from the spectral theorem gives that every primitive idempotent is part of
a Jordan frame, and it is part of the definition of Jordan frame that it sums to the order unit.
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of V with V ∗ , that any subset of a Jordan frame, considered as a set of states, is
perfectly distinguished by that Jordan frame, considered as a measurement. Conse-
quently, an ordered subset of a Jordan frame (and in particular, an ordered Jordan
frame itself) is a frame in the sense of Definition 2.2 (v). So the spectral theorem for
EJAs implies their spectrality.

Lemma 3.3. All frames of the normalized state space of a euclidean Jordan
algebra V are tuples consisting of elements of a Jordan frame for V .

This is known, and implicitly assumed in [13], but we give a proof.

Proof. Since ∂eΩ is the set of primitive idempotents, and V+ is self-dual with
respect to the inner product 〈a, b〉 = tr(a · b), a frame is a sequence ci, i ∈ {1, . . . , s}
of primitive idempotents such that there exists a submeasurement ei for which
〈ei, cj〉 = δij . In a general setting, not only in Jordan state spaces, it follows
immediately from the condition 〈ei, ωj〉 = δij on a frame that if ei =

∑
k pkfk is

a convex decomposition of ei into effects fk , each of the fk also has the property
〈fk, ωj〉 = δkj . So the condition that ωi is a frame may be restated as the existence
of a submeasurement consisting of extremal (in the convex body [0, e]) effects.
Proposition 1.40 of [3] states that the extreme points of the positive part [0, e] of the
unit ball of a JB-algebra are the idempotents. The finite-dimensional JB-algebras
are the EJAs. It is also known (cf. [3], Proposition 2.18) that for idempotents pi ,∑k

i=1 pi ≤ e implies that pi ⊥ pj for all i, j ∈ {1, . . . , k} with i 6= j . So in the
condition for ci to be a frame, we may take the ei to be a mutually orthogonal set
of idempotents. We show that 〈ei, ci〉 = 1 for an idempotent ei and a primitive
idempotent ci implies that ci ≤ ei . To do so we use the fact, from [3], that JB-
algebras V are equipped with normalized self-adjoint idempotent positive linear
maps Pp : V → V called compressions, in bijection with the idempotents p , such
that p = Ppe and the exposed faces (all faces in finite dimension) are the positive
parts of the images of compressions. We have 1 = 〈ei, ci〉 = 〈Peie, ci〉 = 〈e, Peici〉 .
Since it follows from Proposition 1.41 of [3] (in finite dimensions, where the dual space
may be identified with the primal space) that compressions on an EJA are neutral, i.e.
||Pω|| = ||ω|| implies Pω = ω , we have that Peici = ci , hence ci ∈ im+Pei , where
the latter is defined as imPei ∩ V+ . By Lemma 1.39 of [3], im+Pei ∩ [0, e] = [0, ei] ,
and since ci ∈ [0, e] , we have ci ≤ ei .

With ci ≤ ei , and ei ⊥ ej for all i 6= j , it follows that ci ⊥ cj for all i 6= j ,
and consequently that the ci are a subsequence of an ordered Jordan frame.

Now the transitivity properties of Jordan frames allow us to prove strong
symmetry.

Proposition 3.4. The normalized state space of a simple euclidean Jordan algebra
is strongly symmetric.

Proof. Corollary IV.2.7 of Theorem IV.2.5 in [32] states that the compact group
K , defined as the subgroup of Aut0(V+) that fixes the Jordan unit e , acts transitively
on the set of Jordan frames. Since we’ve adopted a canonical inner product, this



Spectral Properties of Convex Bodies 9

is a subgroup of Aut(Ω). It is clear from the proof of Theorem IV.2.5 in [32] that
this transitive action is on ordered Jordan frames. Since we showed, in the proof of
Lemma 3.2 and in Lemma 3.3, that the frames (in the sense of Definition 2.2) are
precisely the ordered subsets of Jordan frames, the group K , and hence Aut(Ω),
acts transitively on the set of k -frames for each k .

Finally, we are ready to formulate our main result.

Theorem 3.5. If Ω is spectral and strongly symmetric, then either Ω is a simplex
or it is affinely isomorphic to the normalized state space of a simple euclidean Jordan
algebra.

That the normalized state space of a simple euclidean Jordan algebra is
spectral and strongly symmetric was shown in Propositions 3.2 and 3.4. The proof
of the converse requires some more preparation and will be given in Section 6.

4. Structure of strongly symmetric spectral sets

In [13], the class of state spaces that appears in our main theorem was character-
ized using, in addition to spectrality and strong symmetry, a third postulate: the
nonexistence of “higher-order” interference, which, roughly speaking, is probabilis-
tic interference involving three or more mutually exclusive alternatives that is not
explainable in terms of pairwise interference between them. Our main result thus
improves on [13] by showing that this third postulate was superfluous. However, in
[13] many important structural features of Ω and V+ were shown to follow just from
the first two postulates, and we will make crucial use of these results, which we now
describe. They use a few additional notions which we first define.

Since we are in finite dimension, a positive definite inner product 〈 · , · 〉 :
V × V → R induces (as does any nondegenerate bilinear form, positive definite or
not) an isomorphism between V ∗ and V . If we use this to identify V with V ∗

then the dual cone becomes V ∗+ := {y ∈ V | ∀x ∈ V+ : 〈y, x〉 ≥ 0} . We say a
cone is self-dual with respect to a given inner product if V+ = V ∗+ upon making this
identification, and we say that a cone V+ is self-dual if there exists an inner product
with respect to which it is self-dual.4 We call such an inner product self-dualizing.
A property stronger than self-duality is perfection (the term is from [5]): a cone
V+ is called perfect if there exists an inner product such that every face F of V+

(including V+ itself) is self-dual with respect to the restriction of that inner product
to F ’s span.5 Recall that a face of a convex set is exposed if it is obtained from the
set by intersecting it with an affine hyperplane.

Definition 4.1. A complementation is an involutive map F 7→ F ′ of a bounded
lattice such that F ∨ F ′ = 1 and F ∧ F ′ = 0. It is called an orthocomplementation

4Self-duality is a properly stronger property than affine isomorphism of V ∗
+ with V+ , which is

sometimes called “weak self-duality”. The cone with square base, for example, separates the two
properties.

5This is properly stronger than every face of a cone being self-dual: the cone with pentagonal
base has every face self-dual, but is not perfect.
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if it is order-reversing: F ≤ G⇔ G′ ≤ F ′ .

Proposition 4.2 (Mostly from [13]). For a convex compact set Ω that is spectral
and strongly symmetric, the following hold:

1. Every face of Ω is generated (as a face) by a frame. Any two frames that
generate the same face F have the same cardinality, which we call the rank,
|F |, of the face. If the face G is a proper subset of F , then |G| < |F |.

2. Every face of Ω is exposed.

3. The cone V+ := R+Ω over Ω is a perfect self-dual cone. The self-dualizing in-
ner product 〈., .〉 can be chosen to be Aut(Ω)-invariant, and such that 〈ω, ω〉 =
1 for all pure states (extremal points) ω of Ω.

4. With respect to the self-dualizing inner product on V , the elements of any frame
form an orthonormal set. The states of a frame, viewed as elements of the
dual space via this inner product, are effects, and are therefore a distinguishing
submeasurement for that frame. If ω1, . . . , ωn is a maximal frame, i.e. a frame
for Ω, then

∑n
i=1 ωi is the order unit.

5. The face F = ω1 ∨ · · · ∨ ωk generated by a frame ω1, . . . , ωk has barycenter∑k
i=1 ωi/k .

6. If F is a face of V+ , (resp. Ω) then F ′ := F⊥ ∩ V+ (resp. F⊥ ∩ Ω) is a face
of V+ (resp. Ω) such that F ∧ F ′ = {0} (resp. F ∧ F ′ = ∅) and F ∨ F ′ = V+

(resp. F ∨ F ′ = Ω). (Here all ⊥’s are taken in V , with respect to the self-
dualizing, invariant inner product.) In a lattice, these two conditions define
what it means for an element F ′ to be a complement of F , so we call F ′ the
face complementary to F , or simply F ’s complement.

7. The face generated by a maximal frame is Ω itself. Every frame A of Ω,
generating a face F , extends to a maximal frame M , by appending a frame B
for F ′ . Similarly if F < G (i.e. F ( G), every frame for F extends to a
frame for G.

8. The map F 7→ F ′ on the face lattice of V+ (equivalently of Ω) is an ortho-
complementation, with respect to which the lattice is orthomodular, i.e. for
F ≤ G, G = F ∨ (F ′∧G). The additional states appended to a frame on F in
order to extend it to a frame on G (cf. item 7 above), are a frame for F ′ ∧G.

We may think of orthomodularity as stating that F ′∧G behaves as a “relative
orthocomplement” of F in G , i.e. an orthocomplement in the sublattice consisting
of elements below or equal to G .

Proof. Item 1 is Proposition 2 of [13]. Item 2 follows easily from item 1.

Item 3 is established in [13] in the course of proving Theorem 8 of that paper,
which states that for every face F , the orthogonal projection (with respect to the
self-dualizing Aut(Ω)-invariant inner product) PF onto the linear span of a face F , is
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a positive map. Iochum [41] showed (see also [5]) that for self-dual cones, positivity
of all such projections with respect to a self-dualizing inner product is equivalent
to perfection. The self-duality of the cones R+Ω ⊂ V over strongly symmetric
spectral convex sets, with respect to an inner product with the stated properties,
was established as Proposition 3 of [13].6

Item 4 is Proposition 6 of [13].

Item 6 is partly stated in Proposition 7 of [13], and the rest can be extracted
from the proof of that proposition.

Item 7 is part of Proposition 7 of [13].

Item 8. The involutiveness of ′ is also part of Proposition 7 of [13]. The
other two conditions on a complementation are part of item 6 above. The last
part of orthocomplementation, order-reversingness, is shown as part of the proof of
Theorem 9 in [13]; it follows directly from the extendibility of frames to maximal
frames.

The second part of item 8, i.e. orthomodularity, is Theorem 9 of [13]. The
crucial element in its proof (given that we have already established that ′ is an
orthocomplement) is the “relative frame extension property”, i.e. the last sentence
in item 7. The last sentence of item 8 is a step in establishing this relative frame
extension property in [13].

The only item we have not covered yet is item 5. It does not appear to be
explicitly stated in [13], although it is likely known. It is proved in the course of
proving Proposition 4.3 below.

Proposition 4.3. Let Ω be a strongly symmetric spectral compact convex set.
Then every face of Ω is a strongly symmetric spectral compact convex set; moreover
if F is a face of Ω and K = Aut(Ω), then K(F ) := KF/K

F = Aut(F ). Here KF is
the subgroup that takes F to itself; KF is the subgroup that fixes F pointwise. Also,
KF = Kc(F ) , where c(F ) =

∑|F |
i=1 ωi/|F |, for any frame ωi for F , is the centroid of

F .

Proof. From the facts that c(Ω) is the Haar average over ∂eΩ, that u =
∑r

i=1 ωi
in a strongly symmetric compact convex set of rank r , where ωi are a maximal frame,
and that u is Aut(Ω)-invariant in our setup, it follows that c(Ω) = (

∑r
i=1 ωi)/r , for

any maximal frame ω1, . . . , ωr . Every face of F is spectral, since spectrality of Ω
asserts, for ω ∈ F , that ω is a convex combination of perfectly distinguishable states,
but these states must be in F by the definition of face, and by Proposition 4.2(7)
they must be extendable to a frame for F . Next we claim that for each face F of Ω,
there is a subgroup of K = Aut(Ω), that preserves spanF and (necessarily or else
it could not consist of automorphisms of Ω) induces automorphisms of F , and acts
transitively on the maximal frames in F . This is immediate from strong symmetry,
since the maximal frames in F are |F |-frames in Ω, and strong symmetry says K
can take any |F |-frame (whether in F or not) to any other. Finally we must show
that frames in F are still frames for F viewed in its affine span, but that is so

6In fact self-duality does not require spectrality, nor does it require the full strength of strong
symmetry: in [53] it was shown that transitivity of Aut(Ω) on 2-frames (ordered pairs of perfectly
distinguishable states) implies self-duality.
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because the cone is perfect, and when the dual cone is represented internally via the
self-dualizing inner product, the distinguishing effects are the states themselves (cf.
item 4 of Proposition 4.2). Perfection of the cone V+ implies that the cone over F is
self-dual in its linear span according to the restriction of the inner product, so these
effects are still in the relative dual cone of F .

In fact, an element of K takes maximal frames of F to maximal frames
of F if, and only if, it belongs to the subgroup KspanF , that preserves spanF .
The action of this group on spanF gives a faithful representation of the group
KspanF/K

spanF (equivalently KF/K
F ), where KspanF is the group of elements in

K fixing spanF pointwise. Since we have shown that F is spectral and strongly
symmetric, it follows from the claim in the first sentence of this proof that the
barycenter of F is

∑|F |
i=1 ωi/|F | for any maximal frame ωi for F . Any automorphism

of F preserves its barycenter, so the automorphism of F induced by any element
of KF must do so, i.e. KF ⊆ Kc(F ) . Furthermore, Kc(F ) ⊆ KF . To see this, note
that c(F ) is in the relative interior of F and therefore F = Face(c(F )). Hence for
φ ∈ Kc(F ) we have φ(F ) = φ(Face(c(f))) = Face(φ(c(F ))) = Face(c(F )) = F , i.e.
φ ∈ KF . Here the second equality is a general fact about automorphisms φ (that
Face(φ(x)) = φ(Face(x))), and the third is from the assumption φ ∈ Kc(F ) .

5. Flags and regularity

In this section we provide some further technical tools which will help us to prove
our main theorem.

Definition 5.1. Let Ω be a convex set.

(i) A flag of Ω is a strictly increasing sequence F1 ⊂ . . . ⊂ Fk of exposed faces of
Ω.

(ii) Ω is called regular, if Aut(Ω) acts transitively on the set of maximal flags of
Ω.

(iii) A subset ∆ ⊆ Ω is called a fundamental region with respect to Aut(Ω) if
Ω = Aut(Ω)∆ and Aut(Ω)-orbits meet the interior of ∆ in at most one point.

Lemma 5.2. If Ω is spectral and strongly symmetric, then it is regular.

In order to prove this lemma we first establish:

Lemma 5.3. Let Ω be a strongly symmetric spectral convex set. Let ω1, . . . , ωr
be a maximal frame in Ω. The sequence

Fi :=
∨

1≤j≤i

{ωj}, i ∈ {1, . . . , r} (4)

is a maximal flag. Conversely, let (F1, . . . , Fr) be a maximal flag of Ω. Then there
exists a maximal frame ω1, ω2, . . . ., ωr such that (4) holds.
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In other words, the formula (4) gives a bijection between maximal frames in
Ω and maximal flags of Ω.

Proof. Let X = ω1, . . . , ωr be a maximal frame. It follows from item 1 of
Proposition 4.2 that the initial segments of X generate a sequence of faces, the
Fi of (4), each properly contained in the next. This is a flag, which we will call ΦX .
In this sequence, the rank |Fi| of Fi is i . Suppose this flag is not maximal. Then it
can be enlarged, either by extending it before F1 , or by extending it after Fr , or by
inserting some face G with Fi ( G ( Fi+1 . It cannot be extended before F1 = {ω1} ,
because the only face below the pure state ω1 is the improper face ∅ . It must have
Fr = Ω by Proposition 4.2 (7), so it cannot be extended beyond Fr . So there must
be an i ∈ {1, . . . , r} and a face G such that Fi ( G ( Fi+1 . By Proposition 4.2
(1) Fi ( G ( Fi+1 implies |Fi| < |G| < |Fi+1| , which contradicts the fact, observed
above, that |Fi| = i and |Fi+1| = i+1 by construction. Since every way of extending
the flag ΦX is inconsistent with the maximality of the frame X , ΦX is a maximal
flag.

Conversely, suppose Φ = F1, . . . , Fr is a maximal flag. By Proposition 4.2(1)
each Fi is the join of (the singletons corresponding to) a frame, whose cardinality
is |Fi| . We will show (“Claim 1”) that F1 = {ω1} for some extremal point ω1 , and
(“Claim 2”) that for each i ∈ {2, . . . , r} , there exists an extremal ωi , distinguishable
from every state in the frame Fi−1 , such that Fi = Fi−1 ∨ ωi . It follows from the
associativity of join that (4) holds for each i , and since Fr = Ω for a maximal
flag, ω1, . . . , ωr generates Ω. Since Ω is generated by a maximal frame, and by
Proposition 4.2(1) all frames generating the same face have the same cardinality,
ω1, . . . , ωr has the same cardinality as a maximal frame, whence it is a maximal
frame.

To show Claim 2 we use the fact, which is part of Proposition 4.2(7), that if
F ( G , any frame for F extends to a frame for G by adjoining a frame for F ′ ∧G .
Consider F = Fi−1, G = Fi , for i ∈ {2, . . . , r} . The frame for the face F ′i−1 ∧ Fi ,
whose join with Fi−1 is Fi , is nonempty because F ’s containment in G is strict.
In fact, were F ′ ∧ G = 0 (i.e. ∅) then we would have (F ′ ∧ G) ∨ F = F , while
orthomodularity says (F ′ ∧ G) ∨ F = G . Say it is σ1, . . . , σm , for m ≥ 1. We

show that m = 1. If m > 1, then we can extend the flag Φ to a flag Φ̃ defined
by F̃j := Fj for j ∈ {1, . . . , i − 1} , F̃j := F̃j−1 ∨ σj−i+1 for j ∈ {i, . . . , i + m − 1} ,
and F̃j := Fj−m+1 for j ∈ {i + m, . . . , r} . For m > 1, Φ is a proper subflag of Φ̃,

contradicting Φ’s maximality. So we must have m = 1, and Φ̃ = Φ.

To show Claim 1, that F1 = {ω1} for some extremal ω1 , we use essentially the
same argument: there is a frame η1, .., η|F1| for F1 , nonempty because F1 6= ∅ , and if
|F1| 6= 1, then we can extend the flag by prefixing it with the nonempty sequence of
subfaces (Hi :=

∨
k∈1,..i{ηk})i∈{1,...,|F1|−1} , generated by the initial segments of that

frame. Since the flag was maximal, the extension must be impossible, so |F1| = 1,
hence F1 = {η1} , with η1 extremal.

Lemma 5.2 follows almost immediately.

Proof of Lemma 5.2. Let Φ1 = F1, . . . , Fr and Φ2 = G1, . . . , Gr be two max-
imal flags of Ω. Then by Lemma 5.3 the faces of Φ1 , resp. Φ2 , are the se-
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quences of faces generated by the initial segments of the maximal frames ω1, . . . , ωr ,
η1, . . . , ηr respectively, defined by the bijection (4). By strong symmetry, there exists
g ∈ Aut(Ω) such that for all i ∈ {1, . . . , r} , gωi = ηi . It follows that gΦ1 = Φ2 .

The following result of Farran and Robertson together with the ensuing clas-
sification of regular convex compact sets is our key tool in proving Theorem 3.5.

Theorem 5.4 (Farran-Robertson [33]). Let Ω ⊆ E be regular and F1 ⊂ . . . ⊂
Fr be a maximal flag. If cj is the barycenter of Fj , then the (r−1)-simplex ∆(Ω) :=
Conv(c1, . . . , cr) is a fundamental region for Ω with respect to Aut(Ω). Moreover,

π(Ω) := Ω ∩ span(c1, . . . , cr)

is a polytope, called the Farran-Robertson polytope of Ω.

An immediate corollary is that Ω = K.π(Ω). We will need a more general
result from [49]. It will allow us to understand the facial structure of Ω by under-
standing that of π(Ω); we will use it to show that frames in π(Ω) correspond to
frames in Ω in the strongly symmetric spectral case. The result is stated near the
top of p. 369 of [49].7

Proposition 5.5 ([49]; see also [33], Theorem 10, and its proof). Let Ω be
a regular convex compact set with automorphism group K and Farran-Robertson
polytope π(Ω). Let F be a face of π(Ω) with centroid c(F ), and write Kc(F ) for
the isotropy subgroup of K at c(F ). Then the orbit Kc(F )F is a face of Ω, which
we call HF , and each face of Ω is of the form gHF for some face F of π(Ω) and
some g ∈ K . Moreover, if g ∈ K and F1, F2, . . . , Fr is a maximal flag of π(Ω) then
gHF1 , gHF2 , . . . ., gHFr is a maximal flag of Ω, and every maximal flag of Ω arises
from a flag of π(Ω) in this way.

Lemma 5.6. If Ω is spectral and strongly symmetric, then π(Ω) is a simplex
whose vertices form a maximal frame.

Proof. Let the dimension of Ω be n and its rank be r . Pick a maximal flag (it
does not matter which one), F1, . . . , Fr , and let ω1, . . . , ωr be the maximal frame
corresponding to it via the bijection (4). Using the description of the barycenters of
faces from Proposition 4.2 (5) gives ∆′ = 4(ω1,

1
2
(ω1 +ω2), . . . , 1

r−1
(ω1 + . . .+ωr−1)).

Since the barycenters just listed are manifestly linearly independent in E (as must
be any set of barycenters of faces of a flag), the linear space L spanned by ∆′ is
(r − 1)-dimensional. It is easy to see that ω1, . . . , ωr−1 are a basis for L .

Recall that we extend the action of SO(E) to an action of SO(E) on V ,
which must fix the ray over c(Ω) (pointwise), and equip V with a corresponding
invariant inner product such that this action of SO(E) ' SO(n) is as a subgroup
of SO(V ) ' SO(n + 1). By Proposition 4.2(3) this invariant inner product can be

7An essentially identical (except for its more restricted premise) theorem is stated for a more
restricted setting (the subclass of polar representations occuring within adjoint representations of
real semisimple groups) in [33].
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chosen to be self-dualizing for the cone V+ and such that all pure states have unit
euclidean norm, and we do so.

Since E is embedded as an affine subspace of V not containing 0, the linear
subspace L of E is an affine, but not a linear, subspace of V , affinely generated
by c1, . . . , cr−1, cr , where cr = c(Ω) is the zero of E (but not embedded as the

zero of V !). Consequently L = L̃ ∩ E , where L̃ = span{ω1, . . . , ωr} ⊆ V , whence

π(Ω) = L ∩ Ω = L̃ ∩ Ω.

We will show that L̃ ∩ Ω is the simplex 4(ω1, . . . , ωr). Recall (Proposition
4.2, item 4) that the frame elements ω1, . . . , ωr are orthonormal in V . Therefore

they are an orthonormal basis for L̃ . By the self-duality of V+ , ω1, . . . , ωr are also
on extremal rays of the dual cone with respect to the inner product. So everything in
V+ has nonnegative inner product with each of ω1, . . . , ωr . These constraints impose
in particular that L̃ ∩ V+ lies in the closed positive halfspaces

H+
i := {x ∈ L̃ | 〈ωi, x〉 ≥ 0},

i ∈ {1, . . . , r} of each the hyperplanes Hi := {x ∈ L̃ | 〈ωi, x〉 = 0} in L̃ . These
constraints define a polyhedral cone which (using the mutual orthogonality of the
ωi ) is identical to the cone over the simplex 4(ω1, . . . , ωr). Since ω1, . . . , ωr are in

V+ and in L̃ , we know that L̃∩V+ contains this cone, and since we have just shown
that L̃∩ V+ is contained in this cone, we have that L̃∩ V+ is equal to it, and hence
that π(Ω) = L̃ ∩ Ω = 4(ω1, . . . , ωr).

Since the states ω1, . . . , ωr are the vertices of the Farran-Robertson polytope
of Ω, the faces F1, . . . , Fr of the polytope defined by the formula (4) are a maximal
flag of that polytope. Then by Proposition 5.5, the faces HFi

of Ω are also a
maximal flag of Ω. Since HFi

is Kc(Fi).Fi , c(Fi) is the centroid of HFi
. Since

c(Fi) = (1/i)
∑i

j=1 ωi , HFi
is the face of Ω generated by ω1, . . . , ωi , i.e.

HFi
=

i∨
i=1

ωi, i ∈ {1, . . . , r}. (5)

So by Lemma 5.3, ω1, . . . , ωi are a frame in Ω, not merely in π(Ω), and ω1, . . . , ωr
is a maximal frame.

6. Proof of the Main Result

In this section we use Lemmas 5.2 and 5.6 together with the classification of regular
convex bodies in [49] to prove Theorem 3.5. We begin by describing the classification
in [49], giving only sufficient detail for our needs. To do so, we need to define a
notion called symmetric space representation in [49] and [28]; we shall refer to it as
a symmetric space isotropy representation.

Definition 6.1. Let K be a compact connected Lie group, k its Lie algebra. A
representation ρ : K → SO(V ) is called a symmetric space isotropy representation
if there are a real semisimple Lie algebra h with Cartan decomposition h = g⊕ p , a
Lie algebra isomorphism A : k → g , and an isomorphism L of linear spaces V → p
such that L ◦ dρ(X) ◦ L−1(y) = [A(X), y] for all X ∈ k, y ∈ p .
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In other words, L ◦ dρ(X) ◦ L−1 = ad(A(X)). The terminology “symmetric
space isotropy representation” comes from the fact that the tangent space to the
symmetric space H/K is p , and the canonical action of H on H/K has isotropy
subgroup, at any point, isomorphic to K , which acts linearly on the tangent space;
this action is isomorphic to the one in Definition 6.1.

A maximal abelian subspace a0 of such a representation space p (or the image
of such a subspace under the isomorphism L of Definition 6.1) is termed a Cartan
subspace.

What we need to know about the Madden-Robertson classification is summa-
rized in the following.

Proposition 6.2 (Madden-Robertson [49]). Every regular convex body Ω is either
a polytope, or affinely isomorphic to the union of the K -orbit, in an irreducible sym-
metric space isotropy representation of K , of its Farran-Robertson polytope π(Ω),
embedded in the representation space p as π(Ω) = Ω∩a, where a is a Cartan subspace
of p. The set Ω is determined, up to affine isomorphism, by the representation and
the affine isomorphism class of the polytope π(Ω). Conversely every irreducible sym-
metric space isotropy representation contains full-dimensional regular convex bodies
of the form Ω = K.π(Ω) with π(Ω) = Ω ∩ a. The list of such representations is
given in Tables 2-4 of [49], together with the regular convex bodies Ω thus embedded,
specified by giving the polytope π(Ω).

We will also need the following lemma, which in the main summarizes known,
but somewhat dispersed, facts about euclidean Jordan algebras, along with their
implications for our concerns.

Lemma 6.3. A simple euclidean Jordan algebra V with unit e and rank r may
be identified with the subspace p in the Cartan decomposition g = k ⊕ p of the
reductive Lie algebra g of AutV+ . We have p = r ⊕ p0 , and p0 is the traceless
subspace of V , while r = Re ' R. The action of the automorphism group Aut0(Ω)
of V ’s normalized state space Ω on p0 is an irreducible symmetric space isotropy
representation. Letting a0 be a Cartan subspace of p0 , Ω0 := Ω−c(Ω), the translation
of Ω into p0 , has Farran-Robertson polytope a0 ∩ Ω0 , which is a simplex with r
vertices. By identifying c(Ω) with 0, this linear action is identified with the action
of Aut(Ω) on aff(Ω0), and the action on Ω identified with that on Ω0 .

Since the proof of this Lemma mostly references or recapitulates known,
but somewhat involved, theory of euclidean Jordan algebras, we have placed it in
Appendix A.

Proof of Theorem 3.5. By Lemmas 5.2 and 5.6, every strongly symmetric
convex compact set Ω is a regular compact convex set with π(Ω) a simplex. Madden
and Robertson [49] provide, in their Tables 1-4, a list of the regular convex compact
sets Ω, together with the corresponding polytopes π(Ω). When π(Ω) is a simplex,
the following cases occur:

Case 1: Ω is itself a polytope. Then Ω = π(Ω) so Ω is a simplex.
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Case 2: Ω is not a polytope and π(Ω) is a simplex.

A: π(Ω) is an interval, i.e. π(Ω) = 41 . Then Proposition 2.7 implies that
Ω is a ball, and hence can be realized as the normalized state space of a
rank 2 simple euclidean Jordan algebra.

B: π(Ω) = 4n with n ≥ 2. Comparing the list of Madden and Robertson
with the list of simple euclidean Jordan algebras shows that the regular
convex body Ω is always affinely isomorphic to the normalized state space
of a simple euclidean Jordan algebra. We give a more formal account of
this comparison, using Proposition 6.2 and Lemma 6.3, below.

Lemma 6.3 exhibits the normalized state space Ω, which is a strongly sym-
metric compact convex set, as affinely isomorphic to the K -orbit Ω0 of a Farran-
Robertson polytope Ω0 ∩ a0 in a Cartan subspace a0 of a symmetric space isotropy
representation, which is moreover a simplex. Since by Proposition 6.2 the representa-
tion and the affine isomorphism class of π(Ω) determine the regular convex body Ω,
we see that the normalized EJA state spaces Ω are affinely isomorphic to the regular
convex bodies Ω in those same symmetric space isotropy representations in Tables
2-4 of [49]. Tables 2 and 4 of [49] present the representations by giving noncompact
forms H/K of the symmetric space; Table 3 of [49] gives the pair (h, k). Examina-
tion of those tables shows that the representations coming from simple EJAs in this
manner—given explicitly in Table 1 above by the pair g (playing the role of h in
Definition 6.1) and k—exhaust the the nonpolytopal regular Ω with π(Ω) a simplex
∆n , n ≥ 2, so the higher-rank regular convex compact sets with π(Ω) a simplex are
precisely the normalized EJA state spaces, completing the proof of Theorem 3.5.

To base the proof of Theorem 3.5 on the classification is not completely
satisfactory. It would be desirable to have an intrinsic proof.

While it is not needed for our proof, a little more detail of the Madden-
Robertson classification and its mathematical underpinnings may be of interest. In
a symmetric space isotropy representation, instances of π(Ω) in a occur as the
convex hulls of orbits of particular elements of a under the action of the Weyl group
W := NK(a)/ZK(a) (which is a finite reflection group), namely fundamental weights
dual to roots that are at either end of the Coxeter diagram for the root system of K .
Coxeter diagrams are like Dynkin diagrams, but without information about the root
length, which is irrelevant for the purpose of specifying a finite reflection group. This
description of the polytopes π(Ω) is obtained by using the fact that the polytope
π(Ω) is regular, and Coxeter’s characterization (see for example [27]) of the ways in
which regular polytopes can occur as convex hulls of orbits in finite reflection groups.

The fact that regular convex bodies appear as convex hulls of orbits in sym-
metric space isotropy representations is derived by first showing that they are convex
hulls of orbits in polar representations of connected compact groups, and then using
Dadok’s classification [28] of such representations, which shows that they are orbit-
equivalent to symmetric space isotropy representations. A polar representation is one
in which there exists a subspace that meets every orbit orthogonally. In symmetric
space isotropy representations, this is the Cartan subspace a .



18 Barnum and Hilgert

7. Implications of our result for general probabilistic theories

As mentioned in the introduction, Theorem 3.5 may be viewed as purely a matter
of convex geometry, stating that geometrically natural spectrality and symmetry
assumptions for a compact convex set imply Jordan-algebraic structure. On the other
hand, these conditions make use of the notion of perfect distinguishability, which,
although it is geometrically natural, originated in the context of general probabilistic
theories, and is closely related to information processing properties and protocols
in such theories. While the convex sets of normalized states are fundamental to
describing systems in the GPT framework, additional structure is often specified, for
example a distinguished convex semigroup of positive maps, on the ordered linear
space (V,Ω, u), representing possible dynamical processes, and the analysis may go
beyond the structure of single systems by specifying ways of combining two or more
systems into a composite system, allowing for the study of correlation, entanglement,
and related phenomena.

In particular, in GPTs one often allows the possibility of describing a system
by specifying not only a convex compact set of normalized states, but also a convex
compact subset Eallowed of the set E of effects, satisfying the natural condition
e ∈ Eallowed =⇒ (u − e) ∈ Eallowed . In such a setting, one could define perfect
distinguishability and frames as we have done, except with measurements restricted
to those consisting of effects in Eallowed . In principle, fewer sets of states might be
distinguishable in this situation, leading to fewer frames, which—if strong symmetry
or spectrality were defined in terms of this smaller set of frames—could lead to state
spaces that are strongly symmetric, or spectral, with respect to E , failing to be so
with respect to Eallowed . In fact, this is how strong symmetry and spectrality were
defined in [13], but there it was also shown that the conjunction of strong symmetry
and spectrality, even with respect to this definition that depends on a choice of
both on Ω and Eallowed ⊆ E , implies that Eallowed = E , so that the conjunction of
strong symmetry and spectrality in the sense of [13] is the same as in our sense,
which is what allows us to use the theorems in [13] that concern consequences of this
conjunction. The condition Eallowed = E is frequently used in the GPT literature,
where it is usually called the no-restriction property.

GPT theory has roots in the quantum logic program initiated by Birkhoff and
von Neumann [21], in which the convex compact set of normalized states on various
“logical” objects abstracted from structures on quantum systems, such as modular
or orthomodular posets or lattices, often plays an important role. The work of
Mackey [48] was an important catalyst to rapid and extensive further development,
during the 1960s and early 1970s, of both quantum logic based and more purely
convexity based descriptions of abstract physical systems. We mention in particular
the work of Foulis and Randall [34, 35, 37, 36] and of Ludwig and his group [47].
This work, especially that of Ludwig, was connected with the development of the
concepts of base norm and order unit spaces in functional analysis, a connection
explored primarily in the quantum case in [30], and in greater generality in [31].

While these lines of work continued into the 1990s, there was a revival of inter-
est, especially among physicists, in the area around the turn of the millenium, driven
primarily by the growth of the field of quantum information processing, which raised
questions about the conceptual underpinnings of the peculiar nature of quantum in-
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formation that are particularly suited to investigation in a broader setting such as
that of GPTs, focused on probabilistic properties, often relatively abstract, of sys-
tems and theories that are especially relevant to the nature of information. Hardy’s
[39, 40] axiomatic derivation of the complex quantum formalism, was particularly
important in sparking this revival of interest. The work of Popescu and Rohrlich
[56] was also important: they asked why the correlations between observables on
distinct, but entangled, quantum systems, that are nonclassical by virtue of violat-
ing Bell-type inequalities, nevertheless, by virtue of Tsirel’son’s bound [58], do not
violate these inequalities to the maximum degree permitted by probability theory
constrained only by the requirement that the choice of measurement on one sys-
tem does not affect the marginal probabilities on the other system—a “no-signaling”
requirement that is incorporated into most notions of composites in the GPT frame-
work. While their work was not explicitly in a GPT setting, it can be viewed in
those terms, because such correlations can be realized in a GPT composite of non-
classical, but also non-quantum, state spaces: the square bits of Example 2.6. Given
the importance of entanglement to many of the phenomena and protocols of quantum
information, this resurgence of interest involved increased attention to composite sys-
tems and entanglement, as well as a focus on implications for information-processing
and computation generally. By 2005, Barrett had coined the term “general proba-
bilistic theories” in the paper [16]. In this new wave of research, the setting is often
finite-dimensional, since quantum information and computation protocols are often
formulated in finite dimension—in particular, n qubits have a Hilbert space of di-
mension 2n , and associated state space Ω of density matrices of dimension 22n − 1.
Most of the conceptual questions about the nature of information, and the possibil-
ity of various kinds of information processing protocols or physical phenomena, that
arise from this point of view are just as salient in finite dimension as in the infinite
dimensional setting, and more tractable.

In the remainder of this section, we describe some implications of our result
for two such areas: thermodynamics and its statisical-mechanical underpinning, and
computational query complexity. See [10] for more detail. Important aspects of
quantum and classical thermodynamics and of query complexity have been general-
ized to classes of GPTs satisfying natural postulates including or implying spectrality
and strong symmetry; however, our result shows that these apply to a narrower class
of theories than might have been hoped, already close to complex quantum theory
since their state spaces are Jordan-algebraic.

In [46] it was shown that five GPT principles, of which the fifth is strong
symmetry, allow the formulation of a reasonable query model generalizing the quan-
tum one, and imply that to have probability 1/2 or greater of correctly identifying a
marked item in a list of N items in Grover’s search problem, the number of queries
to the list must be at least (3

2
−
√

2)
√
N/k , where k is the maximal order of interfer-

ence of the GPT theory. A lower bound of Ω(
√
N) (meaning there exists a constant

c such that the number of queries is greater than or equal to c
√
N ) was established

in the quantum case in [20]; it is achieved by Grover’s algorithm, and improves on
the classical lower bound of Ω(N). The GPT bound in [46] is also Ω(

√
N). This

limits the potential gain from higher-order interference of degree k in this setting to
at most a constant factor, c/

√
k compared to quantum. However, it can be shown
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(cf. [23]) that the conjunction of the principles used in [46] implies spectrality. To-
gether with Theorem 3.5 this implies that the GPT systems considered in [46] are
Jordan-algebraic, and hence [59, 54] that higher-order interference (k > 2) is not
possible in this setting. In [12], a definition of query computation was formulated
and two results were obtained concerning query computation in GPTs under nearly
the same assumptions as in [46]; Theorem 3.5 limits these results, too, to simple
Jordan-algebraic systems and classical systems.

In [45], spectrality and strong symmetry were used to extend important results
in classical and quantum thermodynamics to the context of strongly symmetric
spectral systems. These results use the mathematical notions of majorization and
Schur concavity. An l -tuple λ = (λ1, . . . , λl) of real numbers majorizes an m-
tuple σ = (σ1, . . . , σm) of real numbers if, when the shorter tuple is extended to
have length n := max (l,m) by appending 0’s, yielding λ and σ , and the two

are rearranged in monotonically decreasing order, yielding λ
↓

and σ↓ , we have

that for each k ∈ {1, . . . , n} ,
∑k

i=1 λi
↓ ≥ σi

↓ . A function f : ∪n∈NRn → R is
called Schur concave if whenever x majorizes y , f(y) ≥ f(x). “x majorizes y” is
generally interpreted as a formalization of the idea that x is “more mixed” or “more
random” than y , because of the Birkhoff-von Neumann theorem, which states (in
the case where x and y have equal length) that x majorizing y is equivalent to
y being a convex combination of vectors obtained from x by permuting its entries.
Schur concave functions are often viewed as real-valued “measures of randomness”
or “generalized entropies,” since they are precisely the real-valued functions that can
never decrease under such operations. This fact is used in applying majorization to
microcanonical classical thermodynamics (cf. e.g. [1]).

Given spectrality, it is natural to investigate majorization and Schur concave
functions on the spectra (with multiplicity) of states. For each Schur concave function
f , one defines a corresponding generalized entropy on the state space, as giving the
value of f on the spectrum of the state. For example, the von Neumann entropy
of a quantum state, which is given by the Shannon entropy H(p) := −

∑
i pi ln pi

of its spectrum p = {p1, . . . , pn} , is one such entropy. In general theories, one
can define the measurement entropy and the preparation entropy of states. The
measurement entropy of state σ is the minimum, over finegrained measurements,8

of the Shannon entropy of the probabilities of the outcomes when the measurement
is made on a system in state σ ; the preparation entropy is the minimum entropy of
probabilities pi such that σ =

∑
i piωi , for pure states ωi . Analogous definitions can

also be made for the generalized entropies determined by Schur concave functions
other than Shannon entropy. In quantum theory, the preparation and measurement
entropies corresponding to a given f are equal to each other and to the spectral
entropy corresponding to f .

In [45], it was shown in the GPT context, that assuming spectrality and strong
symmetry, the outcome probabilities of any fine-grained measurement on σ are ma-
jorized by those of the spectral measurement (which are equal to σ ’s spectrum), and
hence that the measurement entropy determined by any Schur concave function is

8A measurement is called fine-grained if no effect in the measurement has a decomposition as a
strictly positive linear combination of distinct effects that are not multiples of each other.
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equal to the corresponding spectral entropy.9 In parallel work in [24] the same con-
clusion was obtained in the setting of GPTs using the properties (defined therein) of
causality, purification, purity preservation under both parallel and sequential compo-
sition of pure operations, and strong symmetry. The first four of these assumptions
together (see [24] and references therein for definitions) can be shown to imply spec-
trality. So in light of Theorem 3.5, the setting of [45, 24] is no more general than
that of simple Jordan-algebraic state spaces, and classical ones. The same conclu-
sions were also obtained from a somewhat different set of premises, defining what are
called sharp theories with purification, in [23] and [25]. However in [11] it was shown
that systems in such theories are also Jordan-algebraic (although the class of systems
is not precisely simple Jordan algebras and classical theory, since some nonclassical
nonsimple state spaces are definitely allowed, and to the best of our knowledge it
is not known whether all simple Jordan algebras are). In [6] the same conclusions
were obtained from projectivity of the state space and symmetry of transition prob-
abilities (equivalently, projectivity and self-duality of the state cone, which are in
turn equivalent ([4], cf. also [6]) to its perfection together with the normalization of
the orthogonal projections onto the linear spans of faces). All Jordan-algebraic state
spaces have these properties, but it is an open question whether they are the only
ones.

8. Comparison to other characterizations of classes of Jordan-algebraic
state spaces

There are various characterizations of classes of Jordan-algebraic state spaces from
convexity and/or symmetry properties, but differing significantly from ours; in this
section we review some of these. Most of these characterize the class of all Jordan-
algebraic state spaces, rather than just the simple ones and the simplicial ones.
Some of them characterize generalizations of euclidean Jordan algebras that extend
to infinite dimensional cases: the JB-algebras (which includes the self-adjoint parts
of C∗ algebras) and the JBW-algebras (JB-algebras with predual, including the self-
adjoint parts of von Neumann (also known as W ∗ ) algebras). In this section, we
consider two main characterizations: one due to Koecher and Vinberg, involving
homogeneity and self-duality of the cone V+ , and one due to Alfsen and Shultz,
involving a special class of positive projections associated with the faces of V+ , as
well as additional properties.

One of the most important such characterizations is the Koecher-Vinberg
theorem [43, 60], which states that the finite-dimensional homogeneous self-dual
cones are precisely the Jordan-algebraic ones. A (closed, pointed, generating) cone
is homogeneous if its group of affine automorphisms acts transitively on its interior.
Since all bases of such a cone are affinely isomorphic, it follows that a state space
Ω such that R+Ω is homogeneous and self-dual, is the normal state space of a
euclidean Jordan algebra. Since, as noted in Proposition 4.2, spectrality and strong
symmetry imply self-duality of the cone over the normalized state space, showing
directly that spectrality and strong symmetry imply homogeneity would give an

9The theorem was stated for the Renyi α -entropies, but the proof uses Schur concavity and
applies to arbitrary Schur concave functions.
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alternative proof of our main theorem. In [61], formulated in a variant of the
GPT framework that uses the formalism of [34, 35], assumptions are described that,
nontrivially, imply homogeneity and self-duality, giving rise to Jordan structure via
the Koecher-Vinberg theorem. Bellissard and Iochum [17] generalized the Koecher-
Vinberg theorem to include a class of infinite-dimensional cases: they characterized
the facially homogeneous self-dual cones in real Hilbert spaces as the positive cones
of JBW-algebras. A facially homogeneous self-dual cone V+ in a real Hilbert space
V (the notion is due to Connes [26]) is one for which, for any face F , the difference
PF − PF⊥ between the orthogonal (with respect to the self-dualizing inner product)
projections PF and PF⊥ onto the span of F and the span of

F⊥ := {x ∈ K : 〈F, x〉 = 0〉},

respectively, belongs to the Lie algebra of Aut(V+). Facial homogeneity is known to
coincide with homogeneity in finite dimension [18], and indeed for JB algebras with
finite faithful normal trace [19] (this class does not, however, encompass all the JBW
algebras).

Another important result is due to Alfsen and Shultz who characterized the
positive cones of JB algebras and of JBW algebras [2] (see also [3]). It uses their
notion of compression: in terms of the formalism of embedded state spaces (V,Ω, u),
this is a positive idempotent linear map P : V ∗ → V ∗ which is normalized and bicom-
plemented. An idempotent that is positive with respect to a cone K is complemented
if there exists projection P ′ , called its complement, such that im(P )∩K = ker(P ′)∩K
and ker(P ) ∩K = im(P ′) ∩K , and bicomplemented if both P and P ∗ are comple-
mented (the latter with respect to the cone K∗ ). An idempotent P : V ∗+ → V ∗+
is normalized if P ∗u ≤ u , where u is the order unit in V ∗+ . In [13], the dual
P ∗ : V → V of a compression P : V ∗ → V ∗ was termed a filter. A state space is
said to be projective if every face of V ∗+ is the positive part imP ∩ V ∗+ of the image
of a compression P (equivalently, every face of V+ is the positive image of a filter).
Projectivity of a finite-dimensional state space implies that the lattice of faces of V ∗+
is orthomodular and atomic, and that there is a bijection γ : e 7→ γ(e) between the
atomic effects P ∗u (where P ∗ is the compression onto an atomic face) and the pure
states: 〈γ(e), e〉 = 1, and γ(e) is the unique pure state giving unit probability to e ;
likewise γ−1(ω) is the unique atomic effect given unit probability by ω .

The finite-dimensional case of Alfsen and Shultz’ result is then that an em-
bedded state space (V,Ω) is the normalized state space of an EJA if and only if it
satisfies (1) projectivity, which states that every face of V ∗+ is the positive part of the
image of a filter, (2) symmetry of transition probabilities, which states that for any
two atomic effects e and f 〈e, γ(f)〉 = 〈f, γ(e)〉 , and (3) purity preservation, which
states that filters take pure states in Ω to multiples of pure states. Araki [4] obtained
a similar result in finite dimension, using projectivity with respect to a notion of filter
prima facie somewhat more general than the dual of a compression, but equivalent
in the context of symmetry of transition probabilities and purity-preservation which
he also assumed.

From Proposition 4.2, the conjunction of spectrality and strong symmetry
implies projectivity and self-duality of V+ . Since self-duality near-trivially implies
symmetry of transition probabilities [13], a direct argument from spectrality and
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strong symmetry to purity preservation by filters would give another proof of the
Jordan structure, using the Alfsen-Shultz characterization. In fact, the result in [13]
was obtained by showing that filters preserve purity—but the additional assumption
of absence of higher-order interference was used in showing this.

Alternative properties characterizing the Jordan-algebraic state spaces among
those satisfying projectivity and symmetry of transition probabilities are (1) the
Hilbert ball property, or (2) the satisfaction of the atomic covering law by the lattice
of faces of the state space. A finite-dimensional convex set has Alfsen and Shultz’
Hilbert ball property if and only if for every pair of extreme points of Ω, the face they
generate is affinely isomorphic to a euclidean ball. (See [3], Def. 9.9, for additional
technical conditions relevant in infinite dimension.) The atomic covering law for a
lower-bounded lattice states that if a is an atom in the lattice, and b any element of
the lattice, then either a∨ b = b , or a∨ b covers b . Here “x covers y” means x > y
and there exists no w such that x > w > y , i.e. x is above y and there is nothing
between them, and an atom is an element that covers 0. So an alternative proof of
our result could also aim at establishing either one of these properties, or the absence
of higher order interference, directly from spectrality and strong symmetry.

9. Characterizing the spaces of complex hermitian density matrices
within the class of simple Jordan-algebraic state spaces and simplices

As mentioned in the introduction, characterizations of classes of Jordan state spaces
using properties abstracted from the usual (complex hermitian) quantum density
matrices are often motivated by attempts to characterize the quantum density ma-
trices themselves. Such characterizations of quantum state space, whether in terms
of postulates whose appeal is mathematical, physical, informational, or some combi-
nation of these, often proceed by first characterizing Jordan-algebraic state spaces,
or some subset thereof, and then adding an additional postulate or set of postulates
that narrows things down to standard, i.e. complex, quantum theory. In this section
we describe two important classes of such postulates: the first class involves relation-
ships between the observables of a system and the generators of possible reversible
dynamical evolutions, while the second class involves the possibility of combining
systems in a tomographically local way, meaning that the statistical correlations be-
tween local observables on the components of a composite system determine its state
completely. Either of these can, of course, be used in conjunction with Theorem 3.5
to characterize the irreducible complex quantum systems. (Depending on the details
of the postulate used, it may be necessary to add an additional assumption to rule
out “classical” state spaces, i.e. the simplices.)

Given the no-restriction hypothesis, the simplices, which are interpreted as
the state spaces of classical systems, may be ruled out by many alternative natural
postulates, many of which have interpretations in terms of information-processing
characteristics of systems, in the GPT framework. With no-restriction, these are
properties purely of the convex compact set Ω. Among these alternatives we mention:
existence of a tradeoff between information gained about an unknown state, and
disturbance to that state (a result reported in [16]); impossibility of universal cloning,
or of universal broadcasting [7, 8], the existence of a state having two different convex



24 Barnum and Hilgert

decompositions into pure states (a more or less folkloric mathematical fact that is
the finite-dimensional case of Choquet’s theorem); the lack of universal compatibility
of measurements [55]; and nontriviality of the connected identity component of the
automorphism group of the normalized states (emphasized by Hardy [39, 40]). If
one uses such an assumption to rule out the simplices, one may then concentrate on
excluding the normalized state spaces of the simple Jordan algebras other than the
complex hermitian ones.

The first such assumption we will consider is that of energy observability,
introduced for this purpose in [13]. (Unlike some of the other assumptions we will
consider, it also rules out the simplices, since it implies nontriviality of Aut0(Ω).)

Definition 9.1. A normalized state space Ω is said to have energy observability
([13], Def. 30) if the Lie algebra aut(Ω) of Aut(Ω) is nontrivial and there exists
an injective linear map φ from aut(Ω) to the observable space V ∗ of the system,
such that for each x ∈ aut(Ω), φ(x) is conserved by the one-parameter subgroup
generated by x , and φ(x) = λu (for some λ ∈ R) if and only if x = 0.

Proposition 9.2 ([13]). Let Ω be the normalized state space of a simple Jordan
algebra, satisfying energy observability. Then there is an n such that Ω is affinely
isomorphic to the normalized state space of the Jordan algebra Mn(C)sa , i.e. the set
of density matrices of a finite-dimensional quantum system.

Note that energy observability is formulated in the convex framework with-
out reference to Jordan structure. The terminology is motivated by the idea that a
continuous one-parameter subgroup of automorphisms is a potential reversible dy-
namical time-evolution, and in quantum physics the generator of such an evolution
is a Hermitian operator H (the Hamiltonian) conserved by the evolution (identified
with energy). Here “generator” is meant in the “physicists” sense that the evolution
operator is ω 7→ eiHt .10 The assumption that aut (Ω) is nontrivial is there because
without it there is nothing that fits the intuitive notion of energy that inspired the
definition, although it should also be noted that it rules out the simplices.

The notion of energy observability is closely related to, and inspired by, Alfsen
and Shultz’ notion of dynamical correspondence, and Connes’ notion of orientation,
on a Jordan algebra. However, these notions are not purely convex, but also involve
the Jordan structure. To formulate the notion of dynamical correspondence, one
first needs to note that for a JB-algebra V , the Lie algebra g of Aut(V+) (the
elements of which are called order-derivations) decomposes orthogonally into spaces
k of skew-adjoint, and p of self-adjoint (with respect to the inner product derived
from the Killing form), order derivations—this is the Cartan decomposition of g , in
the finite-dimensional case. The self-adjoint ones may be identified with the space
of Jordan multiplication operators, La : b 7→ a • b . The skew order-derivations are
precisely the generators of one-parameter groups of automorphisms of the Jordan
algebra (cf. Lemma 2.81 of [3]), hence they are (linearized extensions of) generators

10In the usual mathematical terminology, the generator of this evolution is instead the anti-
Hermitian operator iH ; then the injection from the Lie algebra of generators of one-parameter
subgroups of automorphisms (i.e. lie(Aut(Ω)) ≡ aut (Ω)) into the observables is just X 7→ −iX .
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of one-parameter groups of affine automorphisms of A ’s normalized state space (cf.
[32]). (In finite dimension, they are precisely the generators of such one-parameter
groups.)

A dynamical correspondence ψ on a JB-algebra A is a linear map, ψ : a 7→ ψa ,
of A into the set of skew order-derivations of A , such that (1) [ψa, ψb] = −[La, Lb] ,
and (2) ψaa = 0. Although the map a 7→ ψa (which is not explicitly required
to be either injective or surjective) is in the opposite direction from the injection
of generators into the space of observables required by energy observability, the
condition ψaa = 0 is otherwise the analogue of the conservation condition in the
definition of energy observability: it says that a is conserved by the evolution
generated by ψa . Condition (1) is motivated by the fact mentioned above, that
in the Jordan case A itself may be identified with a subspace, p , of the Lie algebra
of automorphisms of A+ , since the Jordan multiplication operators act as elements
of p . The condition says that the map a 7→ ψa commutes with the Lie bracket, up
to a minus sign. Such a minus sign would arise if the map a 7→ ψa implemented
multiplication by a complex unit i on g . A Connes orientation ([3], Definition 6.8) on
a JBW-algebra is a complex structure I (so, I2 = −1) on g/Z(g), compatible with
Lie brackets and the Cartan involution † in the sense that [Ix, y] = [x, Iy] = I[x, y]
and I(x†) = −(Ix)† . (Connes’ notion was originally developed in the case in
which A+ is a facially homogeneous self-dual cone in a Hilbert space.) Connes’
orientations are indeed in bijection with dynamical correspondences on JBW-algebras
([3], Theorem 6.18).

By Proposition 10.27 of [3], a dynamical correspondence on a JB-algebra A
determines a unique C∗ -algebra structure on A+ iA , such that A is the self-adjoint
part and A ’s Jordan product is the symmetrized C∗ -product. In the special case
in which A is a JBW-algebra the product on A + iA is in fact a W ∗ -product, and
A + iA is a W ∗ , i.e. von Neumann, algebra. It should not be surprising that such
a complex structure characterizes the self-adjoint parts of complex ∗-algebras in
the finite-dimensional case, in light of the fact, evident from Table 1, that the only
family of Lie algebras g = aut(V+) of simple EJAs whose semisimple part (which
is g/Z(g) in that case) is a complex Lie algebra, is sl(m,C), corresponding to the
Jordan algebra V = Mm(C)sa .

A different approach to ruling out the Jordan-algebraic systems other than
complex quantum theory involves introducing an appropriate notion of composite
system consisting of two or more “subsystems”. The existence of tomographically
local Jordan-algebraic composites of Jordan-algebraic systems can then be used as
a postulate to narrow things down to complex quantum systems. Tomographic
locality can be mathematically formulated as the requirement that the ambient
vector space VAB spanned by the cone of unnormalized states of a composite AB
of systems A,B whose ambient vector spaces are VA and VB , be the real tensor
product VA ⊗ VB .11 In [15] it was shown, building on work of H. Hanche-Olsen

11The notion of “tomography” in this context is that of determining the state of a system by
making various measurements on identically prepared copies of a system. “Local” tomography
of a composite system is possible if one can estimate the state by making measurements on its
parts, A and B , and estimating the correlations between sufficiently many measurement results. If
VAB = VA ⊗ VB , then products of effects eA ⊗ fB span the dual of the state space, so determining
the probabilities of a spanning set allows one to determine the components of the state in a basis.
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[38], that the existence of a tomographically local Jordan-algebraic composite of a
Jordan-algebraic system A with a qubit (the lowest-dimensional nontrivial complex
quantum system, whose state space is a three-dimensional ball), satisfying some
other natural desiderata, implies that A must be complex quantum. However, this
does not rule out the possibility of tomographically local theories whose systems are
spectral and strongly symmetric but in which qubits do not occur as a system type
that must be composable with other systems.

In [50], Ll. Masanes and M. Müller formulated five postulates, one of which is
tomographic locality, applicable to theories whose systems are described in the GPT
framework, and showed that the only theories satisfying them are finite-dimensional
complex quantum theory and finite-dimensional classical theory. Their notion of
theory is not quite fully explicit, but it appears to require that for any two systems
of the theory, there exists another system of the theory that is a locally tomographic
composite of those systems. Since the four postulates not referring to composite
systems are satisfied by all systems (satisfying the no-restriction property) that either
have simple Jordan-algebraic state spaces, or whose state spaces are simplices, we can
combine their result with the main result of this paper to conclude that any collection
of (finite-dimensional) systems satisfying strong symmetry and spectrality, and closed
under the formation of tomographically local composites, must consist either entirely
of complex quantum systems, or entirely of classical systems.

That the tomographic locality of the assumed composites is necessary for these
results is indicated, for example, by the constructions in [9] of theories in which some
of the Jordan-algebraic systems other than complex quantum ones can be combined
to form composites that are not tomographically local.

A similar argument involving tomographic locality can be made using the re-
sult of [51], in which it is shown that only for d = 3 does there exist a composite,
satisfying tomographic locality and continuous reversible transitivity on pure states,
of two systems each of which has a euclidean d-ball as state space. Since by Propo-
sition 2.7 and Theorem 3.5, spectrality and strong symmetry imply that bits (i.e.
systems whose largest frame is of cardinality 2) are balls, and also that nonclassical
systems are simple Jordan-algebraic and hence have continuous reversible transitiv-
ity on pure states, it follows from Theorem 3.5 and [51] that no tomographically local
composite of a bit with itself can preserve spectrality and strong symmetry, except
in the complex quantum case (for which bits are 3-balls) or the classical case.
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A. Higher-rank euclidean Jordan algebras in the Madden-Robertson
classification

In this appendix we give the proof of Lemma 6.3, which we here restate.

Lemma A.1. A simple euclidean Jordan algebra V may be identified with the
subspace p in the Cartan decomposition g = k ⊕ p of the reductive Lie algebra g
of Aut(V+). We have p = R ⊕ p0 , and p0 is the traceless subspace of V . The
action of the connected identity component Aut0(Ω) of the automorphism group of
V ’s normalized state space Ω on the traceless subspace is an irreducible symmetric
space isotropy representation. Ω0 := Ω−c(Ω), the translation of Ω into the traceless
subspace, has Farran-Robertson polytope a0 ∩Ω0 , which is a simplex. By identifying
c(Ω) with 0, this linear action is identified with the action of Aut(Ω) on aff(Ω), and
the action on Ω identified with that on Ω0 .

Proof of Lemma 6.3. The affine automorphism group G := Aut(V+) of the
cone of squares in an EJA V , like the automorphism group of any self-dual cone [52],
is reductive. If the algebra is simple, then Aut(V+) = Gs ×R+ , where Gs is simple.
V is an irreducible spherical representation space for the semisimple group Gs (cf.
e.g. [57], p. 42) which means that Gs ’s maximal compact subgroups, and therefore
also their connected identity components, have one-dimensional fixed-point spaces.
(It is also irreducible for G , which has the same compact subgroups as Gs .) We
may choose a Cartan decomposition g = k⊕ p such that k = lie(K), where K is the
connected identity component of the maximal compact subgroup of Gs (and therefore
also of G) that fixes the identity e . Note that this is a Cartan decomposition of the
Lie algebra of the reductive group G .12 In fact we have p = p0 ⊕ r , where r ' R is
the Lie algebra of the R+ factor in G , and gs = k⊕ p0 the Cartan decomposition of
the simple Lie algebra gs .

The Jordan algebra V itself can be identified with p , via the linear bijection
x 7→ x.e for x ∈ p . 13 Here the linear action of x on V is an element of g , which acts
on V via the differential of the linear action of Aut(V+) on V . In the orthogonal
(with respect to the canonical inner product on the Jordan algebra, which agrees up
to constants with that derived from the form on g) decomposition V ' p = R⊕ p0 ,
R is the span Re of the Jordan unit e . We can expand x ∈ V as x = xee+x0 , with
xe ∈ R ; the coefficient xe is (trx)/rankV , and x0 is of course traceless.

Although the actions of G = Aut(V+), and of Gs , on V are not their adjoint
actions (restricted to p), the restriction of these actions to K does coincide (on p)
with the restriction of the adjoint action. In other words, K y p0 is a symmetric
space isotropy representation (Definition 6.1), of the connected compact group K ,
associated with the noncompact irreducible symmetric space (Gs)0/K . This can
be checked explicitly, or deduced from general considerations. For example, in the

12See [44], Ch. VII §2 for a definition of reductive group and the extension of the notion of
Cartan decomposition to such groups; or see the introduction and Appendix of [22] for the more
straightforward case of linear groups (which includes G = Aut(V+)).

13For example, this is part of Theorem 8.5 of [57], with the Cartan decomposition given in Lemma
8.6 of that book and the proof. It also follows from the conjunction of Theorem III.2.1 and Theorem
III.3.1 in [32] (this conjunction is, roughly, Satake’s Theorem 8.5).
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matrix cases, with D one of R , C , or H , we have that (AutV+)0 is the group
generated by X 7→ AXA† , where A is a nonsingular matrix with entries in D .
While in general A† 6= A−1 , equality does hold when A is respectively orthogonal,
unitary, or quaternionic-unitary; this exemplifies the general fact that for compact
groups, representations are isomorphic to their duals. For a general argument, one
could for example use the fact (see e.g. [32]) that the interior of the positive cone of a
simple EJA is a symmetric cone, meaning a Riemannian symmetric space, AutV+/K ,
which is a product R× (Aut0(V+)/K) of the euclidean factor R with the irreducible
noncompact symmetric space Aut0(V+)/K , i.e. Gs/K , so that V ◦+ is foliated by
copies of Gs/K , which are in fact level sets of the Jordan determinant of V , since
Gs ’s action on V preserves the Jordan determinant. Then one can see directly
that one can identify the traceless subspace po of p with the tangent space to any
constant-determinant copy of Gs/K at its intersection with Re , in particular with
the tangent space to such a submanifold at e/rankV = c(Ω), and the action of K
by restriction on the unit-trace subspace, i.e. aff(Ω) ≡ p0 + e/rankV , is precisely its
action on the tangent space, i.e. the isotropy action on p0 , if one views aff(Ω) as a
linear space by identifying c(Ω) with zero.

Recall that the normalized state space, Ω := V+ ∩ {x ∈ V |trx = 1} , is also
conv(K.ω) for any extremal ω ∈ Ω (from strong symmetry). Everything in the
affine plane {x ∈ V |trx = 1} has the form c(Ω) ⊕ ω0 , where c(Ω) = e/rankV , the
barycenter of Ω, is the unit-trace element of the fixed-point space Re , and ω0 ∈ p0 .

The maximal abelian subspaces of V ' p (viewed as subspaces of g =
lie(AutV+)) are of the form a = a0⊕Re , where a0 are the maximal abelian subspaces
of p0 . In, for example, [32], Proposition VI.3.3, and the discussion preceding it, the
Peirce decomposition ⊕ri,j=1Vij of a simple EJA of rank r is used, and it is observed
that a = ⊕iVii where Vii = Rci , and the ci, i ∈ {1, . . . , r} are a Jordan frame.
With Ω defined as usual as the normalized state space embedded in V = p , with
the Jordan unit e as order unit, we have that a∩Ω is the simplex generated by the
ci , which is affinely isomorphic to a0 ∩ Ω0 , where Ω0 := Ω − e/tre = Ω − e

r
is the

translation of the normalized Jordan state space into a0 . Moreover, by Proposition
6.2 a0 ∩ Ω0 = π(Ω0), since by Propositions 3.2 and 3.4 and Lemma 5.2, Ω0 is
regular.
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